An adventitious angle problem concerning $\sqrt{2}$ and $\frac{\pi}{7}$ / Darij Grinberg
The purpose of this note is to give two solutions of the following problem (Fig. 1):
Let $A B C$ be an isosceles triangle with $A B=A C$ and $B C=1$. Let P be a point on the side $A B$ of this triangle which satisfies $A P=1$.
Prove that $C P=\sqrt{2}$ holds if and only if $\measuredangle C A B=\frac{\pi}{7}$.

Fig. 1
It is not hard to solve this problem using trigonometry or complex numbers (see, e. g., the MathLinks discussion
http://www.mathlinks.ro/Forum/viewtopic.php?t=22849
for the direction $\left.\triangle C A B=\frac{\pi}{7} \Rightarrow C P=\sqrt{2}\right)$.
Here, we will present two synthetic solutions of the problem; the first one was given (for the direction $C P=\sqrt{2} \Rightarrow \measuredangle C A B=\frac{\pi}{7}$) by Stefan V. (a pseudonym), the second one is apparently original.

First solution (Stefan V.):

Before solving the problem, we recall two facts on parallelograms. The first one is a pretty well-known formula:

Lemma 1. Let $A B C D$ be a parallelogram. Then, $A C^{2}+B D^{2}=2 \bullet\left(A B^{2}+B C^{2}\right)$.
In other words, the sum of the squares of the diagonals of a parallelogram is equal to the double sum of the squares of two adjacent sides. (See Fig. 2.)

Fig. 2
Lemma 1 is most easily proven using vectors and their scalar products: Since $A B C D$ is a parallelogram, we have $\overrightarrow{C D}=\overrightarrow{B A}$, or, equivalently, $\overrightarrow{C D}=-\overrightarrow{A B}$. Thus $\overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}=\overrightarrow{B C}-\overrightarrow{A B}$, and hence

$$
\begin{aligned}
A C^{2}+B D^{2} & =\overrightarrow{A C}^{2}+\overrightarrow{B D}^{2}=(\overrightarrow{A B}+\overrightarrow{B C})^{2}+(\overrightarrow{B C}-\overrightarrow{A B})^{2} \\
& =\left(\overrightarrow{A B}^{2}+2 \cdot \overrightarrow{A B} \cdot \overrightarrow{B C}+\overrightarrow{B C}^{2}\right)+\left(\overrightarrow{B C}^{2}-2 \cdot \overrightarrow{B C} \cdot \overrightarrow{A B}+\overrightarrow{A B}^{2}\right) \\
& =2 \cdot\left(\overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}\right)=2 \cdot\left(A B^{2}+B C^{2}\right),
\end{aligned}
$$

so Lemma 1 is proven. Note that Lemma 1 is more known in the form $A C^{2}+B D^{2}=A B^{2}+B C^{2}+C D^{2}+D A^{2}$, which is trivially equivalent to $A C^{2}+B D^{2}=2 \cdot\left(A B^{2}+B C^{2}\right)$ since $A B=C D$ and $B C=D A$ (because $A B C D$ is a parallelogram).

The next property of parallelograms applied below will be:
Lemma 2. Let $A B C D$ be a parallelogram. If $A C=\sqrt{2} \bullet A B$, then $B D=\sqrt{2} \bullet B C$.
In other words, if in a parallelogram, a diagonal is $\sqrt{2}$ times as long as a side, then the other diagonal is $\sqrt{2}$ times as long as the other side. (See Fig. 3.)

Fig. 3
In fact, Lemma 2 is a trivial corollary of Lemma 1 : If $A C=\sqrt{2} \cdot A B$, then $A C^{2}=2 \cdot A B^{2}$; subtracting this from the equation $A C^{2}+B D^{2}=2 \cdot\left(A B^{2}+B C^{2}\right)$ which holds by Lemma 1 , we obtain $B D^{2}=2 \cdot B C^{2}$, so that $B D=\sqrt{2} \cdot B C$, and Lemma 2 is proven.

Fig. 4
There is also an alternative proof of Lemma 2 using similar triangles (Fig. 4): Let X be the reflection of the point A in the point B. Then, $B X=A B$. On the other hand, $A B=D C$, since $A B C D$ is a parallelogram. Thus, $B X=D C$. Together with $B X \| D C$ (what follows from $A B \| D C$, what is because $A B C D$ is a parallelogram), this yields that the quadrilateral $B D C X$ is a parallelogram, so that $X C=B D$.

Now, we supposed that $A C=\sqrt{2} \bullet A B$, so that $A C^{2}=2 \bullet A B^{2}$. In other words, $\frac{A C}{A B}=\frac{2 \bullet A B}{A C}$. But $B X=A B$ yields $2 \bullet A B=A B+B X=A X$, so this becomes $\frac{A C}{A B}=\frac{A X}{A C}$. Since we also trivially have $\measuredangle C A B=\measuredangle X A C$, we can conclude that the triangles $C A B$ and $X A C$ are similar. Thus, $\frac{X C}{C B}=\frac{A C}{A B}$. Since $X C=B D$ and $A C=\sqrt{2} \bullet A B$, this becomes $\frac{B D}{C B}=\frac{\sqrt{2} \bullet A B}{A B}=\sqrt{2}$; hence, $B D=\sqrt{2} \bullet C B=\sqrt{2} \bullet B C$. This again proves Lemma 2.

Now we come to the actual solution of the problem:
In order to solve the problem, we have to prove two assertions:
Assertion 1: If $C P=\sqrt{2}$, then $\measuredangle C A B=\frac{\pi}{7}$.
Assertion 2: If $\measuredangle C A B=\frac{\pi}{7}$, then $C P=\sqrt{2}$.
Before we verify these two assertions, we perform some observations independent of the validity of $C P=\sqrt{2}$ and $\measuredangle C A B=\frac{\pi}{7}$.
(See Fig. 5.) Let the parallel to the line $A B$ through the point C meet the parallels to the lines $B C$ and $A C$ through the point P at the points S and R.

We have $C S \| A B$, or, equivalently, $C S \| B P$, and we have $P S \| B C$; thus, the quadrilateral $B C S P$ is a parallelogram. Thus, $C S=B P$. On the other hand, we have $C R \| A B$, or, equivalently, $C R \| A P$, and we have $P R \| A C$; thus, the quadrilateral $A C R P$ is a parallelogram. This yields $C R=A P$. Hence, $R S=C R+C S=A P+B P=A B$. Together with $R S \| A B$ this implies that the quadrilateral $A B R S$ is a parallelogram.

Let $\measuredangle C A B=\alpha$. Since triangle $A B C$ is isosceles, its base angle $\measuredangle A B C$ then equals

$$
\measuredangle A B C=\frac{\pi-\measuredangle C A B}{2}=\frac{\pi-\alpha}{2} .
$$

Since $C R \| A B$, we have $\measuredangle B C R=\measuredangle A B C$, so that $\measuredangle B C R=\frac{\pi-\alpha}{2}$.
Now $C R=A P=1=B C$; thus, the triangle $B C R$ is isosceles, so its base angle is

$$
\measuredangle C B R=\frac{\pi-\measuredangle B C R}{2}=\frac{\pi-\frac{\pi-\alpha}{2}}{2}=\frac{\left(\frac{\pi+\alpha}{2}\right)}{2}=\frac{\pi+\alpha}{4} .
$$

Hence,

$$
\measuredangle P B R=\measuredangle A B C+\measuredangle C B R=\frac{\pi-\alpha}{2}+\frac{\pi+\alpha}{4}=\frac{2(\pi-\alpha)+(\pi+\alpha)}{4}=\frac{3 \pi-\alpha}{4} .
$$

Now, $P R \| A C$ implies $\measuredangle R P B=\measuredangle C A B$, so that $\measuredangle R P B=\alpha$. Thus, the sum of angles in triangle $P B R$ yields

$$
\measuredangle B R P=\pi-\measuredangle P B R-\measuredangle R P B=\pi-\frac{3 \pi-\alpha}{4}-\alpha=\frac{\pi+\alpha}{4}-\alpha=\frac{\pi-3 \alpha}{4} .
$$

Now, we have $B P=B R$ if and only if the triangle $P B R$ is isosceles with base $P R$; this holds if and only if $\measuredangle R P B=\measuredangle B R P$, i. e. if $\alpha=\frac{\pi-3 \alpha}{4}$; but this is obviously equivalent to $4 \alpha=\pi-3 \alpha$, hence to $\alpha=\frac{\pi}{7}$. So we have shown that $B P=B R$ holds if and only if $\alpha=\frac{\pi}{7}$.

Fig. 5
Now, we will prove the Assertions 1 and 2. We start with the proof of Assertion 1:
Assume that $C P=\sqrt{2}$. Since $A P=1$, this rewrites as $C P=\sqrt{2} \cdot A P$. By Lemma 2, applied to the parallelogram $A C R P$, this entails $A R=\sqrt{2} \bullet A C$. Since $A B=A C$, this rewrites as $A R=\sqrt{2} \bullet A B$. According to Lemma 2, applied to the parallelogram $A B R S$, this leads to $B S=\sqrt{2} \cdot B R$. But since $B C=1$, we can rewrite the equation $C P=\sqrt{2}$ in the form $C P=\sqrt{2} \bullet B C$ as well, and thus, from Lemma 2, applied to the parallelogram $B C S P$, we conclude that $B S=\sqrt{2} \cdot B P$. Comparing this with $B S=\sqrt{2} \cdot B R$, we get $B P=B R$. As showed above, this is equivalent to $\alpha=\frac{\pi}{7}$, i. e. to $\measuredangle C A B=\frac{\pi}{7}$, and thus Assertion 1 is proven.

More difficult is the proof of Assertion 2:
Assume that $\triangle C A B=\frac{\pi}{7}$. In other words, $\alpha=\frac{\pi}{7}$. According to the above, this yields $B P=B R$.
Application of Lemma 1 to the parallelogram $B C S P$ yields $B S^{2}+C P^{2}=2 \cdot\left(B C^{2}+B P^{2}\right)$, what, in view of $B C^{2}=1^{2}=1$, becomes $B S^{2}+C P^{2}=2 \cdot\left(1+B P^{2}\right)$.

Application of Lemma 1 to the parallelogram $A C R P$ yields $C P^{2}+A R^{2}=2 \cdot\left(A C^{2}+A P^{2}\right)$, what, in view of $A C=A B$ and $A P^{2}=1^{2}=1$, becomes $C P^{2}+A R^{2}=2 \cdot\left(A B^{2}+1\right)$.

Application of Lemma 1 to the parallelogram $A B R S$ yields $A R^{2}+B S^{2}=2 \cdot\left(A B^{2}+B R^{2}\right)$, what, in view of $B P=B R$, becomes $A R^{2}+B S^{2}=2 \cdot\left(A B^{2}+B P^{2}\right)$.

Thus,

$$
\begin{aligned}
C P^{2} & =\frac{2 \cdot C P^{2}}{2}=\frac{\left(B S^{2}+C P^{2}\right)+\left(C P^{2}+A R^{2}\right)-\left(A R^{2}+B S^{2}\right)}{2} \\
& =\frac{2 \cdot\left(1+B P^{2}\right)+2 \cdot\left(A B^{2}+1\right)-2 \cdot\left(A B^{2}+B P^{2}\right)}{2}=2,
\end{aligned}
$$

so that $C P=\sqrt{2}$. Thus, Assertion 2 is proven, and the solution of the problem is complete.

Second solution:

Fig. 6
(See Fig. 6.) The point P lies on the side $A B$ of triangle $A B C$ and satisfies $A P=1$. Let Q be the point on the side $A C$ of triangle $A B C$ satisfying $A Q=1$. Since the triangle $A B C$ is isosceles with $A B=A C$, from symmetry it then follows that $P Q \| B C, B P=C Q$ and $B Q=C P$. Since $P Q \| B C$, we have $\triangle Q P B=\pi-\triangle A B C$. Since triangle $A B C$ is isosceles with $A B=A C$, we have $\triangle A B C=\triangle A C B$. Thus $\triangle Q P B=\pi-\triangle A C B=\pi-\triangle Q C B$. Thus, the quadrilateral $B P Q C$ is cyclic, so the Ptolemy theorem yields $C P \cdot B Q=B C \cdot P Q+B P \cdot C Q$. Since $B C=1, B Q=C P$ and $B P=C Q$, this becomes $C P \cdot C P=1 \bullet P Q+B P \bullet B P$, what simplifies to $C P^{2}=P Q+B P^{2}$.

The triangle $A B C$ is isosceles with the base $B C$; let $\varphi=\triangle A B C=\triangle A C B$ be its base angle. Then, the angle at its apex A is $\triangle C A B=\pi-2 \varphi$. Consequently, $2 \varphi=\pi-\measuredangle C A B$.

Fig. 7
(See Fig. 7.) Now let M be the point on the ray $Q P$ satisfying $\triangle M A Q=\varphi$. Since $P Q \| B C$, we have $\triangle A Q M=\triangle A C B$, thus $\triangle A Q M=\varphi$, and thus $\triangle M A Q=\measuredangle A Q M=\varphi$; hence, the triangle $M A Q$ is isosceles with base $A Q$, and it has the same base angle as the isosceles triangle $A B C$ (in fact, the base angle of triangle $A B C$ is φ, too). Furthermore, it has the same base as triangle $A B C$ (since $A Q=1$ and $B C=1)$. Hence, the isosceles triangle $M A Q$ is congruent to the isosceles triangle $A B C$. Therefore, the legs of these two triangles are equal: $Q M=A B$.

Since $\triangle C A B=\pi-2 \varphi$ and $\triangle M A Q=\varphi$, we have

$$
\triangle M A P=\triangle M A Q-\measuredangle C A B=\varphi-(\pi-2 \varphi)=3 \varphi-\pi .
$$

(See Fig. 8.) Let the angle bisector of the angle $P A M$ intersect the line $P Q$ at a point U. Then, $\triangle U A P=\frac{\measuredangle M A P}{2}=\frac{3 \varphi-\pi}{2}$. Consequently,

$$
\measuredangle U A Q=\measuredangle U A P+\measuredangle C A B=\frac{3 \varphi-\pi}{2}+(\pi-2 \varphi)=\frac{(3 \varphi-\pi)+2 \cdot(\pi-2 \varphi)}{2}=\frac{\pi-\varphi}{2} .
$$

On the other hand, $\measuredangle A Q U=\measuredangle A Q M=\varphi$; by the sum of angles in triangle $U A Q$, we thus have

$$
\measuredangle A U Q=\pi-\triangle A Q U-\measuredangle U A Q=\pi-\varphi-\frac{\pi-\varphi}{2}=\frac{\pi-\varphi}{2}=\measuredangle U A Q .
$$

Therefore, the triangle $U A Q$ is isosceles with $Q U=A Q$. Since $A Q=1$, this means that $Q U=1$.
Together with $Q M=A B$, this leads to $M U=Q M-Q U=A B-1=A B-A P=B P$.
Similarly to the point M on the ray $Q P$ satisfying $\triangle M A Q=\varphi$, we can construct a point N on the ray $P Q$ satisfying $\measuredangle N A P=\varphi$. Similarly to the point U, we then define the point of intersection V of the angle bisector of the angle $Q A N$ with the line $P Q$. Similarly to the above equation $Q U=1$, we can now prove that $P V=1$.

As showed above, $\triangle A U Q=\frac{\pi-\varphi}{2}$. In other words, $\triangle A U V=\frac{\pi-\varphi}{2}$. Similarly, $\measuredangle A V U=\frac{\pi-\varphi}{2}$. On the other hand, $\triangle U A Q=\frac{\pi-\varphi^{2}}{2}$ and $\measuredangle A U Q=\frac{\pi-\varphi}{2}$. Thus, $\triangle A U V=\measuredangle U A Q$ and $\measuredangle A V U=\measuredangle A U Q$. Hence, the triangles $A U V$ and $Q A U$ are similar; this yields $A U: U V=Q A: A U$, so that $A U^{2}=Q A \bullet U V$. Since $Q A=A Q=1$, this becomes $A U^{2}=U V$.

Now, $U V=Q U+Q V=Q U+(P V-P Q)=1+(1-P Q)=2-P Q$, and hence

$$
C P^{2}-2=\left(P Q+B P^{2}\right)-2=B P^{2}-(2-P Q)=B P^{2}-U V=M U^{2}-A U^{2}
$$

(since $M U=B P$ and $A U^{2}=U V$).
As the triangle $M A Q$ is congruent to the triangle $A B C$, we have $\measuredangle Q M A=\measuredangle C A B$; in other words,
$\measuredangle U M A=\measuredangle C A B$. On the other hand, the line $A U$ is the angle bisector of the angle $P A M$, and this yields

$$
\begin{aligned}
\triangle M A U & =\frac{\measuredangle M A P}{2}=\frac{3 \varphi-\pi}{2}=\frac{6 \varphi-2 \pi}{4}=\frac{3 \cdot 2 \varphi-2 \pi}{4} \\
& =\frac{3 \cdot(\pi-\measuredangle C A B)-2 \pi}{4}=\frac{\pi-3 \cdot \measuredangle C A B}{4} .
\end{aligned}
$$

Now, we have $C P=\sqrt{2}$ if and only if $C P^{2}=2$. But since $C P^{2}-2=M U^{2}-A U^{2}$, we have $C P^{2}=2$ if and only if $M U^{2}=A U^{2}$, thus if and only if $M U=A U$, i. e. if and only if the triangle $A M U$ is isosceles with base $A M$. This, in turn, is equivalent to the equality of its angles $\triangle U M A$ and $\triangle M A U$; but because of $\triangle U M A=\measuredangle C A B$ and $\triangle M A U=\frac{\pi-3 \cdot \measuredangle C A B}{4}$, these angles are equal if and only if $\measuredangle C A B=\frac{\pi-3 \bullet \measuredangle C A B}{4}$. This simplifies to $4 \bullet \triangle C A B=\pi-3 \bullet \triangle C A B$, and thus to $\triangle C A B=\frac{\pi}{7}$. Combining, we see that $C P=\sqrt{2}$ if and only if $\measuredangle C A B=\frac{\pi}{7}$; hence the problem is solved.

