## An adventitious angle problem concerning $\sqrt{2}$ and $\frac{\pi}{7}$ / Darij Grinberg

The purpose of this note is to give two solutions of the following problem (Fig. 1): Let *ABC* be an isosceles triangle with AB = AC and BC = 1. Let *P* be a point on the side *AB* of this triangle which satisfies AP = 1.

Prove that  $CP = \sqrt{2}$  holds if and only if  $\triangle CAB = \frac{\pi}{7}$ .



It is not hard to solve this problem using trigonometry or complex numbers (see, e. g., the MathLinks discussion

http://www.mathlinks.ro/Forum/viewtopic.php?t=22849 for the direction  $\triangle CAB = \frac{\pi}{7} \implies CP = \sqrt{2}$ ).

Here, we will present two synthetic solutions of the problem; the first one was given (for the direction  $CP = \sqrt{2} \implies \triangle CAB = \frac{\pi}{7}$ ) by Stefan V. (a pseudonym), the second one is apparently original.

## **First solution** (Stefan V.):

Before solving the problem, we recall two facts on parallelograms. The first one is a pretty well-known formula:

**Lemma 1**. Let *ABCD* be a parallelogram. Then,  $AC^2 + BD^2 = 2 \cdot (AB^2 + BC^2)$ .

In other words, the sum of the squares of the diagonals of a parallelogram is equal to the double sum of the squares of two adjacent sides. (See Fig. 2.)



Lemma 1 is most easily proven using vectors and their scalar products: Since  $\overrightarrow{ABCD}$  is a parallelogram, we have  $\overrightarrow{CD} = \overrightarrow{BA}$ , or, equivalently,  $\overrightarrow{CD} = -\overrightarrow{AB}$ . Thus  $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BC} - \overrightarrow{AB}$ , and hence

$$AC^{2} + BD^{2} = \overrightarrow{AC}^{2} + \overrightarrow{BD}^{2} = \left(\overrightarrow{AB} + \overrightarrow{BC}\right)^{2} + \left(\overrightarrow{BC} - \overrightarrow{AB}\right)^{2}$$
$$= \left(\overrightarrow{AB}^{2} + 2 \cdot \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC}^{2}\right) + \left(\overrightarrow{BC}^{2} - 2 \cdot \overrightarrow{BC} \cdot \overrightarrow{AB} + \overrightarrow{AB}^{2}\right)$$
$$= 2 \cdot \left(\overrightarrow{AB}^{2} + \overrightarrow{BC}^{2}\right) = 2 \cdot (AB^{2} + BC^{2}),$$

so Lemma 1 is proven. Note that Lemma 1 is more known in the form  $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2$ , which is trivially equivalent to  $AC^2 + BD^2 = 2 \cdot (AB^2 + BC^2)$ since AB = CD and BC = DA (because ABCD is a parallelogram).

The next property of parallelograms applied below will be:

**Lemma 2**. Let *ABCD* be a parallelogram. If  $AC = \sqrt{2} \cdot AB$ , then  $BD = \sqrt{2} \cdot BC$ .

In other words, if in a parallelogram, a diagonal is  $\sqrt{2}$  times as long as a side, then the other diagonal is  $\sqrt{2}$  times as long as the other side. (See Fig. 3.)



Fig. 3

In fact, Lemma 2 is a trivial corollary of Lemma 1: If  $AC = \sqrt{2} \cdot AB$ , then  $AC^2 = 2 \cdot AB^2$ ; subtracting this from the equation  $AC^2 + BD^2 = 2 \cdot (AB^2 + BC^2)$  which holds by Lemma 1, we obtain  $BD^2 = 2 \cdot BC^2$ , so that  $BD = \sqrt{2} \cdot BC$ , and Lemma 2 is proven.



Fig. 4

There is also an alternative proof of Lemma 2 using similar triangles (Fig. 4): Let X be the reflection of the point A in the point B. Then, BX = AB. On the other hand, AB = DC, since ABCD is a parallelogram. Thus, BX = DC. Together with  $BX \parallel DC$  (what follows from  $AB \parallel DC$ , what is because

parallelogram. Thus, BX = DC. Together with  $BX \parallel DC$  (what follows from  $AB \parallel DC$ , what is because *ABCD* is a parallelogram), this yields that the quadrilateral *BDCX* is a parallelogram, so that XC = BD. Now, we supposed that  $AC = \sqrt{2} \cdot AB$ , so that  $AC^2 = 2 \cdot AB^2$ . In other words,  $\frac{AC}{AB} = \frac{2 \cdot AB}{AC}$ . But BX = AB yields  $2 \cdot AB = AB + BX = AX$ , so this becomes  $\frac{AC}{AB} = \frac{AX}{AC}$ . Since we also trivially have  $\triangle CAB = \triangle XAC$ , we can conclude that the triangles *CAB* and *XAC* are similar. Thus,  $\frac{XC}{CB} = \frac{AC}{AB}$ . Since XC = BD and  $AC = \sqrt{2} \cdot AB$ , this becomes  $\frac{BD}{CB} = \frac{\sqrt{2} \cdot AB}{AB} = \sqrt{2}$ ; hence,  $BD = \sqrt{2} \cdot CB = \sqrt{2} \cdot BC$ . This again proves Lemma 2.

Now we come to the actual solution of the problem:

In order to solve the problem, we have to prove two assertions:

Assertion 1: If  $CP = \sqrt{2}$ , then  $\triangle CAB = \frac{\pi}{7}$ . Assertion 2: If  $\triangle CAB = \frac{\pi}{7}$ , then  $CP = \sqrt{2}$ .

Before we verify these two assertions, we perform some observations independent of the validity of  $CP = \sqrt{2}$  and  $\triangle CAB = \frac{\pi}{7}$ .

(See Fig. 5.) Let the parallel to the line AB through the point C meet the parallels to the lines BC and AC through the point P at the points S and R.

We have CS || AB, or, equivalently, CS || BP, and we have PS || BC; thus, the quadrilateral BCSP is a parallelogram. Thus, CS = BP. On the other hand, we have  $CR \parallel AB$ , or, equivalently,  $CR \parallel AP$ , and we have  $PR \parallel AC$ ; thus, the quadrilateral ACRP is a parallelogram. This yields CR = AP. Hence, RS = CR + CS = AP + BP = AB. Together with RS || AB this implies that the quadrilateral ABRS is a parallelogram.

Let  $\triangle CAB = \alpha$ . Since triangle ABC is isosceles, its base angle  $\triangle ABC$  then equals

$$\triangle ABC = \frac{\pi - \triangle CAB}{2} = \frac{\pi - \alpha}{2}.$$

Since  $CR \parallel AB$ , we have  $\triangle BCR = \triangle ABC$ , so that  $\triangle BCR = \frac{\pi - \alpha}{2}$ . Now CR = AP = 1 = BC; thus, the triangle *BCR* is isosceles, so its base angle is

$$\triangle CBR = \frac{\pi - \triangle BCR}{2} = \frac{\pi - \frac{\pi - \alpha}{2}}{2} = \frac{\left(\frac{\pi + \alpha}{2}\right)}{2} = \frac{\pi + \alpha}{4}$$

Hence,

$$\triangle PBR = \triangle ABC + \triangle CBR = \frac{\pi - \alpha}{2} + \frac{\pi + \alpha}{4} = \frac{2(\pi - \alpha) + (\pi + \alpha)}{4} = \frac{3\pi - \alpha}{4}$$

Now,  $PR \parallel AC$  implies  $\triangle RPB = \triangle CAB$ , so that  $\triangle RPB = \alpha$ . Thus, the sum of angles in triangle *PBR* yields

$$\triangle BRP = \pi - \triangle PBR - \triangle RPB = \pi - \frac{3\pi - \alpha}{4} - \alpha = \frac{\pi + \alpha}{4} - \alpha = \frac{\pi - 3\alpha}{4}.$$

Now, we have BP = BR if and only if the triangle *PBR* is isosceles with base *PR*; this holds if and only if  $\triangle RPB = \triangle BRP$ , i. e. if  $\alpha = \frac{\pi - 3\alpha}{4}$ ; but this is obviously equivalent to  $4\alpha = \pi - 3\alpha$ , hence to  $\alpha = \frac{\pi}{7}$ . So we have shown that BP = BR holds if and only if  $\alpha = \frac{\pi}{7}$ .



Fig. 5

Now, we will prove the Assertions 1 and 2. We start with the proof of Assertion 1:

Assume that  $CP = \sqrt{2}$ . Since AP = 1, this rewrites as  $CP = \sqrt{2} \cdot AP$ . By Lemma 2, applied to the parallelogram ACRP, this entails  $AR = \sqrt{2} \cdot AC$ . Since AB = AC, this rewrites as  $AR = \sqrt{2} \cdot AB$ . According to Lemma 2, applied to the parallelogram ABRS, this leads to  $BS = \sqrt{2} \cdot BR$ . But since BC = 1, we can rewrite the equation  $CP = \sqrt{2}$  in the form  $CP = \sqrt{2} \cdot BC$  as well, and thus, from Lemma 2, applied to the parallelogram *BCSP*, we conclude that  $BS = \sqrt{2} \cdot BP$ . Comparing this with  $BS = \sqrt{2} \cdot BR$ , we get BP = BR. As showed above, this is equivalent to  $\alpha = \frac{\pi}{7}$ , i. e. to  $\triangle CAB = \frac{\pi}{7}$ , and thus Assertion 1 is proven.

More difficult is the *proof of Assertion 2*: Assume that  $\triangle CAB = \frac{\pi}{7}$ . In other words,  $\alpha = \frac{\pi}{7}$ . According to the above, this yields BP = BR. Application of Lemma 1 to the parallelogram *BCSP* yields  $BS^2 + CP^2 = 2 \cdot (BC^2 + BP^2)$ , what, in view of  $BC^2 = 1^2 = 1$ , becomes  $BS^2 + CP^2 = 2 \cdot (1 + BP^2)$ .

Application of Lemma 1 to the parallelogram ACRP yields  $CP^2 + AR^2 = 2 \cdot (AC^2 + AP^2)$ , what, in view of AC = AB and  $AP^2 = 1^2 = 1$ , becomes  $CP^2 + AR^2 = 2 \cdot (AB^2 + 1)$ .

Application of Lemma 1 to the parallelogram *ABRS* yields  $AR^2 + BS^2 = 2 \cdot (AB^2 + BR^2)$ , what, in view of BP = BR, becomes  $AR^2 + BS^2 = 2 \cdot (AB^2 + BP^2)$ .

Thus,

$$CP^{2} = \frac{2 \cdot CP^{2}}{2} = \frac{(BS^{2} + CP^{2}) + (CP^{2} + AR^{2}) - (AR^{2} + BS^{2})}{2}$$
$$= \frac{2 \cdot (1 + BP^{2}) + 2 \cdot (AB^{2} + 1) - 2 \cdot (AB^{2} + BP^{2})}{2} = 2,$$

so that  $CP = \sqrt{2}$ . Thus, Assertion 2 is proven, and the solution of the problem is complete. Second solution:



(See Fig. 6.) The point *P* lies on the side *AB* of triangle *ABC* and satisfies *AP* = 1. Let *Q* be the point on the side *AC* of triangle *ABC* satisfying AQ = 1. Since the triangle *ABC* is isosceles with AB = AC, from symmetry it then follows that  $PQ \parallel BC$ , BP = CQ and BQ = CP. Since  $PQ \parallel BC$ , we have  $\triangle QPB = \pi - \triangle ABC$ . Since triangle *ABC* is isosceles with AB = AC, we have  $\triangle ABC = \triangle ACB$ . Thus  $\triangle QPB = \pi - \triangle ACB = \pi - \triangle QCB$ . Thus, the quadrilateral *BPQC* is cyclic, so the Ptolemy theorem yields  $CP \cdot BQ = BC \cdot PQ + BP \cdot CQ$ . Since BC = 1, BQ = CP and BP = CQ, this becomes  $CP \cdot CP = 1 \cdot PQ + BP \cdot BP$ , what simplifies to  $CP^2 = PQ + BP^2$ .

The triangle *ABC* is isosceles with the base *BC*; let  $\varphi = \triangle ABC = \triangle ACB$  be its base angle. Then, the angle at its apex *A* is  $\triangle CAB = \pi - 2\varphi$ . Consequently,  $2\varphi = \pi - \triangle CAB$ .



Fig. 7

(See Fig. 7.) Now let *M* be the point on the ray *QP* satisfying  $\triangle MAQ = \varphi$ . Since *PQ* || *BC*, we have  $\triangle AQM = \triangle ACB$ , thus  $\triangle AQM = \varphi$ , and thus  $\triangle MAQ = \triangle AQM = \varphi$ ; hence, the triangle *MAQ* is isosceles with base *AQ*, and it has the same base angle as the isosceles triangle *ABC* (in fact, the base angle of triangle *ABC* is  $\varphi$ , too). Furthermore, it has the same base as triangle *ABC* (since *AQ* = 1 and *BC* = 1). Hence, the isosceles triangle *MAQ* is congruent to the isosceles triangle *ABC*. Therefore, the legs of these two triangles are equal: QM = AB.

Since  $\triangle CAB = \pi - 2\varphi$  and  $\triangle MAQ = \varphi$ , we have

$$\triangle MAP = \triangle MAQ - \triangle CAB = \varphi - (\pi - 2\varphi) = 3\varphi - \pi.$$



(See Fig. 8.) Let the angle bisector of the angle *PAM* intersect the line *PQ* at a point *U*. Then,  $\Delta UAP = \frac{\Delta MAP}{2} = \frac{3\varphi - \pi}{2}$ . Consequently,

$$\triangle UAQ = \triangle UAP + \triangle CAB = \frac{3\varphi - \pi}{2} + (\pi - 2\varphi) = \frac{(3\varphi - \pi) + 2 \cdot (\pi - 2\varphi)}{2} = \frac{\pi - \varphi}{2}$$

On the other hand,  $\triangle AQU = \triangle AQM = \varphi$ ; by the sum of angles in triangle UAQ, we thus have

$$\triangle AUQ = \pi - \triangle AQU - \triangle UAQ = \pi - \varphi - \frac{\pi - \varphi}{2} = \frac{\pi - \varphi}{2} = \triangle UAQ.$$

Therefore, the triangle UAQ is isosceles with QU = AQ. Since AQ = 1, this means that QU = 1. Together with QM = AB, this leads to MU = QM - QU = AB - 1 = AB - AP = BP.

Similarly to the point *M* on the ray *QP* satisfying  $\triangle MAQ = \varphi$ , we can construct a point *N* on the ray *PQ* satisfying  $\triangle NAP = \varphi$ . Similarly to the point *U*, we then define the point of intersection *V* of the angle bisector of the angle *QAN* with the line *PQ*. Similarly to the above equation QU = 1, we can now prove that PV = 1.

As showed above,  $\triangle AUQ = \frac{\pi - \varphi}{2}$ . In other words,  $\triangle AUV = \frac{\pi - \varphi}{2}$ . Similarly,  $\triangle AVU = \frac{\pi - \varphi}{2}$ . On the other hand,  $\triangle UAQ = \frac{\pi - \varphi}{2}$  and  $\triangle AUQ = \frac{\pi - \varphi}{2}$ . Thus,  $\triangle AUV = \triangle UAQ$  and  $\triangle AVU = \triangle AUQ$ . Hence, the triangles AUV and QAU are similar; this yields AU : UV = QA : AU, so that  $AU^2 = QA \cdot UV$ . Since QA = AQ = 1, this becomes  $AU^2 = UV$ . Now, UV = QU + QV = QU + (PV - PQ) = 1 + (1 - PQ) = 2 - PQ, and hence

$$CP^{2} - 2 = (PQ + BP^{2}) - 2 = BP^{2} - (2 - PQ) = BP^{2} - UV = MU^{2} - AU^{2}$$

(since MU = BP and  $AU^2 = UV$ ).

As the triangle MAQ is congruent to the triangle ABC, we have  $\triangle QMA = \triangle CAB$ ; in other words,

 $\triangle UMA = \triangle CAB$ . On the other hand, the line AU is the angle bisector of the angle PAM, and this yields

Now, we have  $CP = \sqrt{2}$  if and only if  $CP^2 = 2$ . But since  $CP^2 - 2 = MU^2 - AU^2$ , we have  $CP^2 = 2$  if and only if  $MU^2 = AU^2$ , thus if and only if MU = AU, i. e. if and only if the triangle AMU is isosceles with base AM. This, in turn, is equivalent to the equality of its angles  $\triangle UMA$  and  $\triangle MAU$ ; but because of  $\triangle UMA = \triangle CAB$  and  $\triangle MAU = \frac{\pi - 3 \cdot \triangle CAB}{4}$ , these angles are equal if and only if  $\triangle CAB = \frac{\pi - 3 \cdot \triangle CAB}{4}$ . This simplifies to  $4 \cdot \triangle CAB = \pi - 3 \cdot \triangle CAB$ , and thus to  $\triangle CAB = \frac{\pi}{7}$ . Combining, we see that  $CP = \sqrt{2}$  if and only if  $\triangle CAB = \frac{\pi}{7}$ ; hence the problem is solved.