Problems from the Book — Problem 19.9

Let n € N. Let wy, ws, ..., w, be n reals. Prove the inequality
33 (S
> w;
P 1+9—1

Solution by Dariy Grinberg

Notations.

e For any matrix A, we denote by A [ ‘Z } the entry in the j-th column and the
i-th row of A. [This is usually denoted by A;; or by A, ;]

e Let k be a field. Let v € N and v € N, and let a;; be an element of k for every
(1,7) € {1,2,...,u} x{1,2,...,v} . Then, we denote by (a”)Ezgj the u X v matrix

A which satisfies A [ z } = a; ; for every (i,7) € {1,2,...,u} x {1,2,...,v}.

o Let n € N. Let ty, to, ..., t, be n objects. Let m € {1,2,...,n}. Then, we let
(tl, toy ooy oo, tn> denote the (n — 1)-tuple (t1,t2, ..., b2, tm—1, tms1, tma2y -y tn)

. t;, if i <m;
(that is, the (n — 1)-tuple (s1, sa, ..., Sp,—1) defined by s; = { b ifi>m for
allie{1,2,...,n—1}).
e Let R be a commutative ring with unity. Let aq, as, ..., a,, be m elements of R.

Then, we define an element oy (a1, ag, ..., a,,) of R by

ok (a1, ag, ..., ap) = Z Ha(@)

This element oy, (ay, asg, ..., ) is simply the k-th elementary symmetric polyno-
mial evaluated at aq, ao, ..., a,,.
The Viete theorem states that

m
m—k
H (x — ap) g (a1, a9, ... a,) T

e{1,2,....m} k=0

for every x € R. If we choose some i € {1,2,...,m} and apply this equality to
the m — 1 elements aq, as, ..., G, ..., a,, in lieu of the m elements aq, as, ..., G,
then we obtain

m—1
H (x — ay) w(ay, gy ooy @y, ooy @) 2™ (1)

0e{1,2,....m}\{i} k::()



Theorem 1 (Sylvester). Let n € N, and let A € R"*" be a symmetric
n X n matrix. Then, the matrix A is positive definite if and only if every

. 1<j<m
m € {1,2,...,n} satisfies det (A { J }) > 0.
b1/ 1<i<m

For a proof of Theorem 1, see any book on symmetric or Hermitian matrices.

Theorem 2 (Cauchy determinant). Let k be a field. Let m € N. Let
ai, as, ..., a,, be m elements of k. Let by, b, ..., b,, be m elements of k.
Assume that a; # b; for every (,7) € {1, 2, ...,m}2. Then,

I1 ((a; = a5) (b; = bs))

1 1<j<m (i.7)€{1,2,...m}%
det ( ) = 27
( a; — b 1<i<m I1 (aj —b;)

(i,5)e{1,2,....,m}?

In the following, I attempt to give the most conceptual proof of Theorem 2. First
we recall a known fact we are not going to prove:

Theorem 3 (Vandermonde determinant). Let S be a commutative
ring with unity. Let m € N. Let a4, as, ..., a,, be m elements of S. Then,

e (@22 = I (w-a.

(1,5)€{1,2,...,m}?;
i>j

Besides, a trivial fact:

Lemma 4. Let S be a commutative ring with unity. Let a € S. In the
ring S [X] (the polynomial ring over S in one indeterminate X'), the element
X —a is not a zero divisor.

And a consequence of this fact:

Lemma 5. Let R be a commutative ring with unity. Let m € N. In the
ring R [ X1, Xo, ..., X;n] (the polynomial ring over R in m indeterminates X,
Xo, ..., X;n), the element II (X; — Xj) is not a zero divisor.

(i,j)e{l,Q,_...,m}Q;
1>)
Proof of Lemma 5. We will first show that:
For any (i,7) € {1,2,...,m}* satisfying i > j, the element X; — X;
of the ring R [X;, Xo, ..., X;;,] is not a zero divisor. (2)

Proof of (2). Let R [Xl, Xo, ..., )?i, s Xm} denote the sub-R-algebra of R [ X7, Xs, ..., Xy
generated by the elements X, Xo, ..., X;_o, X;_1, Xit1, Xito, ..., Xin (that is, the m ele-
ments X1, Xy, ..., X, except of X;). Consider the ring (R |:X1,X2, vy 5(\,-, - XmD [ X]

2



—~

(this is the polynomial ring over the ring R [Xl, Xoy ooty Xy ooy Xm} in one indeterminate

X). It is known that there exists an R-algebra isomorphism ¢ : (R [Xl, X,y 3(:, ey XmD [X] —
R[X1, Xs, ..., X;n] such that ¢ (X) = X; and ¢ (X)) = X, for every k € {1,2,...,m} \
{i}. Hence, ¢ (X — X;) =0 (X)— ¢(X;) =X,—X,. Since X — X, is not a zero
~—— ———
=X; =Xj, as
Je{1,2,...mp\{i}
divisor in (R [Xl,Xg, oy X5, ...,XmD [X] (by Lemma 4, applied to S = R |:X17X2, . C Xm}
and a = Xj), it thus follows that ¢ (X — X;) = X; — X, is not a zero divisor in
R[X1, X5, ..., X, (since ¢ is an R-algebra isomorphism). This proves (2).
It is known that if we choose some elements of a ring such that each of these elements

is not a zero divisor, then the product of these elements is not a zero divisor. Hence,
(2) yields that the element 11 (X; — X;) of the ring R [X;, X5, ..., X,,,] is not

(1,)€{1,2,...,m}?%;
i>j
a zero divisor. This proves Lemma 5.
Now comes a rather useful fact:

Theorem 6. Let R be a commutative ring with unity. Let m € N.

Consider the ring R[X7, X5, ..., X;,] (the polynomial ring over R in m in-
determinates X;, X, ..., X;;,). Then,

det (((—1)m—j O <X1,X2, X ...,Xm>)1§j§m> = I x-x).

1<i<m

(1.4)€{1,2,...,m}?;

7>

j—1\1<ism J -1

Proof of Theorem 6. Let V = (Xi )1<i<m. Then, V = X" for every
i€{l,2,...,m}and j € {1,2,...,m}, and
det V' = det ((Xf_l)if:;) = 11 (Xi — X)) (3)
(6,5)€{1,2,...,m}?;

i>j

(by Theorem 3, applied to S = R[X1, Xo, ..., X;»] and a; = X;).
1<j<m

Let W = ((—1)’“*1 T (Xl,XQ,...,)Z,...,Xm)> . Then,

1<i<m

i
{1,2,...,m}.

For every ¢ € {1,2,...,m} and j € {1,2,...,m}, we can apply (1) to z = X; and
ar = Xj, and obtain

W {‘7 } = (-1 Om—j (Xl,XQ,...j(\Z-,...,Xm> for every i € {1,2,...,m} and j €

—_

3

[T  6-X)=3 (Do (XX Xy X ) X715 ()
2e{1,2,...m}\{i} 0

B
Il

Now, for every i € {1,2,...,m} and j € {1,2,...,m}, we have



I
0
=

E
e
s

=
.

i
T

i (here, we substituted k for m — k in the sum)

= I &x-x0 (by (4)). (5)

te{1,2,...m}\{i}

Thus, if j # 4, then (WVT) [ J } =0 (since (WVT) { J 1 = IT (X, — Xy),
t ¢ e{1,2,.m}\{i}
but the product I1 (X, — Xy) contains the factor X; — X; = 0 and thus
06{1,2,...,m}\{i}

equals 0). Hence, the matrix WV7T is diagonal. Therefore,

det (WVT) = f[WVT[”:ﬁ MM x-x)

i=1£€{1,2,....m}\{i}

since (5), applied to j = 4, yields (WV™) { 2 } = H (X; — Xy)
0e{1,2,....;m}\{i}
= I &-xp= I @-x)= ] &-x) JI &-x)
(1,0€{1,2,...m}?; (1,5)€{1,2,...;m}?; (1,5)€{1,2,....m}?; (1,5)€{1,2,...,m}?;
i JF#i j>1 1>]

since the set {(¢, ) € {1,2, aom}y | g £ i} is the union of the two disjoint sets
{G,5) € {1,2,...,m}* | j>i} and {(i,j) € {1,2,..m}* | i>j} ‘

But on the other hand,

det (WVT) =det W -det (V') =detW - J[  (Xi—X))
(i,j)€{1',2,4...,m}2;
1>]
(since det (VT) =detV = I1 (X; — X;)). Hence,
(i,j)€{1,2,'...,m}2;
1>]
detW- ] (X; — X;) =det (WVT) = 11 Xi—x)- ]I (X, — X,).
(i.)€{1,2,....m}?; (i) €{1,2,....m}% (i.1)€{1,2,...m}%
i>j J>t 1>]
But since the element I1 (X; — X;) of the ring R[X;,Xs, ..., X,,] is not a
(z:j>e{1,§,,---7m}2;
i>j



zero divisor (according to Lemma 5), this yields

det W = 11 (X;— X).
(i.5)€{1,2,...m}%;
7>
— 1<j<m
Since W = ((—1)m Om—j (Xl,XQ, o X, ...,Xm>> , this becomes
1<i<m

det (((—1)’"— s <X1,X2,...,X\,...,Xm))lgjsm) - I x-x).

1<i<m 5
(iyj)e{LQ ~~~~~ m} 5
j>t

Thus, Theorem 6 is proven.
Next, we show:

Theorem 7. Let R be a commutative ring with unity. Let m € N. Let aq,

as, ..., 4, be m elements of R. Let by, by, ..., b,, be m elements of R. Then,
1<j<m
det || ) = 11 ((ai — a;) (bj — bi)) -
re{1,2,...m}\{i} 1<i<m (1.5)€{1,2,....m}?;
- 1>

Proof of Theorem 7. Consider the ring R[X7, X5, ..., X,] (the polynomial ring over
R in m indeterminates X1, Xo, ..., X;).

Let V = (af_l)if: Then, V [‘Z } — ol for every i € {1,2,...,m} and j €
{1,2,...,m}.
— 1<j<m
Let W = ((—1)m O (Xl,XQ,...,Xi,...,Xm» . Then,
1<i<m
Wl = )" oy (Xl,XQ,...,E(\i,...,Xm> for every i € {1,2,..,m} and j €
{1,2,...,m}.

For every i € {1,2,...,m} and j € {1,2,...,m}, we can apply (1) to z = a; and
ar = Xy, and obtain

—

m—

H ((Zj —Xg) = (—1)k Ok <X1,X2,...,XZ',...,Xm> (Z}n_l_k. (6)
e{1,2,.... m}\{i} k=0

Now, for every i € {1,2,...,m} and j € {1,2,...,m}, we have



w5 o] el

—

(_1)7”_]‘3 Om—k <X17 X27 st Xia sy Xm) a?_l

Il
1M

[y

3

= (—l)kak (Xl,Xg, s 3(\1», s Xm> a?“_l_k (here, we substituted k for m — k in the sum)

i
o

= ]I @w-x) (by (6)) .

te{1,2,...m¥\{i}

Hence,
1<j<m
W‘7T = H (aj — X@)
0e{1,2,....m}\{3} 1<i<m
Thus,
1<j<m
det I (-x) — det (WVT) — det W - det (f/T)
te{1,2,...m}\{3} 1<i<m
Wi
= H (Xz — XJ) . H (ai - aj)
(i,j)€{1‘,2,4...,m}2; (ivj)€{1'727"“’m}2§
j>i 1>]
) — 1<j<m
since det W = det (((—l)m_] Om—j <X1,X27 vy Xy ---me>> , ) = [1
lsism (i.4) €{1,2,.0.m}?;
7>
~ ~ . <j3<m
by Theorem 6 and det <VT) = det V = det ((az_l)tzgm> = [1 (a;
T (ivj)e{ljz"“’m}%
1>
by Theorem 3
= H (Xj — Xl) . H (ai - aj)
(j7i)€{]i727A"'7m}2; (i7j)€{]t727:"7m}2;
>] 1>)
(here, we renamed i and j as j and ¢ in the first product)
= II (X; — Xi) - 1T (a; — ay)
(ivj)€{1'727""7m}2§ (ivj)€{1'727""’m}2§
1>] 1>)
= I &-x)@-a)=JI (-9 X -x).
(i) €{1,2,....,m}%; (6.)E{1,2,...m}?;
i>j i>j

(Xi — Xj)

— aj)




Both sides of this identity are polynomials over the ring R in m indeterminates X, Xo,
.oy Xpn. Evaluating these polynomials at X; = by, X5 = b, ..., X,,, = b,,,, we obtain

1<j<m

det IT  (@-b) = 11 ((a; — a;) (bj — bi)) -

Z6{172 aaaa m}\{l} 1<:<m (iyj)€{172 ~~~~~ m}2;
- = i>]

This proves Theorem 7.
Proof of Theorem 2. For every i € {1,2,...,m} and j € {1,2,...,m}, we have

(a; — br)
1 _Le{1.2,.,mp\{i}

a; — b [T (a;—b)

e{1,2,....m}

1<j<m

1<j<m
Hence, the matrix < > is what we obtain if we take the matrix I (a; — be)
e{1,2,.m\{i}

a; —b; 1<i<m

1<i<m
and divide its j-th column by  [[  (a; — by) for every j € {1,2,...,m}. Therefore,
e{1,2,....m}

1<j<m

' det < 11 (a; — bf))
| ( 1 )1<g<m ee{1,2,..,mp\{i} 1<i<m
et = D
I IT (a5 =b)
F€{1,2,...om} £€{1,2,....m}
1<j<m

det( N <aj_be>> M (- a) (b~ )
0e{1,2,...mM\{i}

(i,4)€{1,2,....m}%
1<i<m i>j

I1 (a; — be) B I1 (a; — b;)

(,5)e{1,2,...,m}? (i,5)e{1,2,...,m}?

a; —b; 1<i<m

(by Theorem 7). Thus, Theorem 2 is proven.

Theorem 8. Let n € N. Let aq, as, ..., a, be n pairwise distinct reals. Let
¢ be a real such that a; + a; + ¢ > 0 for every (4, j) € {1, 2, ...,n}z. Then,

1 1<j<n
the matrix (—) € R™ " is positive definite.
a; + a; +c 1<i<n

1 1<j<n . 1
Proof of Theorem 8. Let A = (—) . Then, A {] 1 = —
a;+aj+¢/iccpn [ a; +a; +¢

for every i € {1,2,....m} and j € {1,2,...,m}.

Thus, A € R™™" is a symmetric n X n matrix.

Define n reals by, bs, ..., b, by b; = —a; — ¢ for every i € {1,2,...,n}. Then, a; # b,
for every (i,7) € {1,2,...,n}? (since a; — b; = a; — (—a; — ¢) = a; + a; + ¢ > 0).



Now, every m € {1,2,...,n} satisfies

9N 1<i<m 1<j<m
det (A[JD _ det ( ! )
v 1<i<m aj —b; 1<i<m

(SmceAH ] - ai+c1zj+c: aj—(—lai—c) B ajib)
[T ((ai—a;) (b — b))

(1,5)€{1,2,..,m}?%;

1>

= (by Theorem 2, since a; # b; for every (i, ) € {1,2, ...

I1 (a; — b;)
(i,5)e{1,2,....,m}?
2
11 (a; — ay)

(4,5)€{1,2,...,m}?;
1>7]

H (ai + aj + C)
(6,5)€{1,2,...,m}?
< since (a; — a;) (b — b;) = (@i — ;) ((—a; — ¢) = (—a; — ©)) = (a; — @;)° )

and a; —b; =a; — (—a; —¢) =a;+a; + ¢

> 0

(since (a; — a;)* > 0 for every (i,5) € {1,2,...,m}” satisfying i > j (because a;, as, ...,
a, are pairwise distinct, so that a; # a;, thus a; —a; # 0), and a; +a; + ¢ > 0 for every

v 2
(1,7) €{1,2,....m}).
Hence, according to Theorem 1, the symmetric matrix A is positive definite. Since

1 1<j<n 1 1<j<n

A= (—> , this means that the matrix (—> is positive
a;taj+c/icic, a; +a;+¢/1cicpn

definite. Thus, Theorem 8§ is proven.

Corollary 9. Let n € N. Let aq, as, ..., a, be n pairwise distinct reals.
Let ¢ be a real such that a; +a; + ¢ > 0 for every (z j) e {1,2,...,n}". Let

V1, Vg, ..., Uy, be n reals. Then, the inequality Z Z Vit > 0 holds,

i=1j= 1CL2+CL]+C

with equality if and only if vy = v, = ... = v, = 0.
U1
Proof of Corollary 9. Define a vector v € R" by v = b2 Then
o
. 1 1=jzn "< U V;V;
v (ai+aj+c)lgi<nv_lz:;az—l—a —I—CUZU] ;;a,+aj+c (7)
Also, obviously,
v = 0 holds if and only if v; = vy = ... = v, = 0. (8)

1<j<n

1

Now, since the matrix (—> € R™*" is positive definite (by Theorem
CLi—i‘CLj—FC 1<i<n

1 1<j<n
8), we have v <—) v > 0, with equality if and only if v = 0. According
a;i +a;+¢/o,o,



to (7) and (8), this means that Z Z Vit > 0, with equality if and only if
i=1j=1 Qi + Q; +c

vy = vy = ... = v, = 0. Thus, Corollary 9 is proven.

Corollary 10. Let n € N. Let aq, as, ..., a, be n pairwise distinct reals.

Let ¢ be a real such that a; + a; + ¢ > 0 for every (z j) € {1,2,...,n}2.

Let w;, ws, ..., w, be n reals. Then, the inequalit — ) >
1, W2 q ylzljzlaﬁaﬁc

. 2
—c <Z wi> holds, with equality if and only if (¢ + a1) wy = (¢ + az) we =
=1

= (¢ + a,) w, = 0.
Proof of Corollary 10. Define n reals vy, v, ..., v, by v; = (¢ + a;) w; for every
ie{l,2,...,n}.

Then,

n 2
Syt ()

=1 j=1

n 2 n n n n
@i Wiw; B Q0 Wiw;
Sy () T D wiwy
a; +a;+c — Y a; +a;+c
1= 7

i=1 j=1 i=1 j= i=1 j=1
n 2 n n
since (Zwl> :ZZwiwj
i=1 i=1 j=1
n n n n
:ZZ(MHWJ) IZZ<&+C)W%
i—1 j—1 a; +a; +c P a; +a;+c
_Enzzn:(c+ai)(c+aj)ww‘_En:i:(cha,)wl c+aj)w Zn:i V;U;
i=1 j=1 ai+a;+c o i=1 j=1 i+ aj + ¢ zlj:1a1+%+c

(since (¢ + a;) w; = v; and (¢ + aj) w; = v;). Hence,

n

E E G E w; | holds if and only if L B > 0.
e aitai e Y aitait+c
o o )

Also, clearly,

V] = vy = ... = v, = 0 holds if and only if (¢ + a1)w; = (¢ + ag) wy = ... = (¢ + a,) w, = 0.
(10)

Uity > 0 holds, with equality if and only

By Corollary 9, the inequalit
y y q ylzljzlmaﬁc
. . n a«ajwiwj
ifvy = vy = ... = v, = 0. According to (9) and (10), this means that Z Y —>
i=1j=1 a; + a; +c

—c Z w; With equality if and only if (¢ + a1) wy = (¢ + ag) wy = ... = (¢ + a,) w, =

0. Thus Corollary 10 is proven.
The problem follows from Corollary 10 (applied to ¢ = —1 and a; = 7).



