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Preface

This is a lecture specifically addressing the HCI (Human Computer Interaction)
community. It seems necessary as there is an unmanageable amount of publications
on Fitts’ Law, and many of them contribute more to confusion than clarification. A
reasonable chapter in HCI textbooks seems to be missing. The confusion on Fitts’
Law is a breeding ground for more strange theories, and consequently, the number
of questionable publications grows. The situation may worsen with the recent rise of
a new field called Computational Interaction. People doing research in this field are
invited to read this text.

In the recent years, terms like ‘alternative facts’ have become popular, and we
are in danger of losing the truth. So-called ‘filter bubbles’ and ‘echo chambers’ are
a phenomenon of social media platforms and a topic of HCI research. The HCI
community should have a look at itself. Filter bubbles in the sciences cause severe
damage to scientific truth. This lecture is an attempt to prevent this problem.

The first edition of this lecture on Fitts’ Law was written in 2013 in the hope of
triggering a discussion within the HCI community. However, this did not happen and
the HCI community continues to refer to Fitts’ Law but uses MacKenzie’s formula
and calls it the Shannon formulation. Most likely, Shannon would not be amused.
Fitts presented his theory in 1954, and the HCI community produces new papers on
Fitts’ Law up to this day. This raises the question of how long it will take until Fitts’
Law is understood and further research is no longer necessary. It seems that Fitts’
Law will be an eternal research topic for HCI.

The second edition was completely re-edited and restructured and now also con-
tains a section on MacKenzie’s theory. The aim of this lecture is to convince the
HCI community to use Fitts’ formula for Fitts’ Law, even if this means that the
HCI community does not have their own and putatively better MacKenzie formula.
MacKenzie based his theory on the imperfections of Fitts’ formula, but there is noth-
ing wrong with Fitts’ formula, and consequently, there is no need for an alternative
formulation. Additionally, this lecture hopes to prevent the HCI community from
trifling with information theory and other hard sciences. Therefore, i t would be a
good idea to ban Fitts’ Law research from HCI.
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vi Preface

The HCI community claims to be scientific and tries to support this claim with
impressive formulas and advanced statistics with all kinds of post-hoc corrections.
It seems that, for parts of the HCI community, the more difficult and complicated
a topic is presented to be, such that few people understand it, the more scientific
the topic must be. In contrast, this lecture tries to be as simple as possible, so that
hopefully everybody is able to understand it with only simple mathematics and
common sense.

The one piece of good news since the release of the first edition is that parts of
the HCI community now agree that saccadic eye movements are not ruled by Fitts’
Law. For psychologists, this was clear since the beginning of eye movement research
and every textbook states that eye movements are ballistic, which is the opposite
of what Fitts’ Law suggests. For the HCI community, eye movements are now only
Fitts’ Law-like.

The main focus of this lecture lies in explaining Fitts’ theory and related topics.
However, as it is impossible to ignore the existing literature on Fitts’ Law, criticism is
unavoidable. Therefore, it should be emphasized here that this lecture is the author’s
private work and should not be associated with his affiliation.

The text is under Creative Commons CC BY-NC 4.0.

Munich, June 2023 Heiko Drewes

heiko.drewes@ifi.lmu.de
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Chapter 1
Fitts’ Law Basics

Abstract This chapter introduces Fitts’ research and the Index of Difficulty. It
presents four approaches to deriving Fitts’ formula and discusses the differences
between a model and reality and the limits of Fitts’ Law. Additionally, this chap-
ter explains how (and how not) to evaluate measured data of a Fitts’ Law pointing
experiment.

1.1 Introduction

Fitts published his paper ‘The information capacity of the human motor system in
controlling the amplitude of movement’ [10] in 1954. Fitts’ research allows one to
predict the time a human needs to point at a target of a given size at a given distance.
For the HCI community, this law has some significance because it applies to pointing
with a mouse device, and pointing is very important for operating a graphical user
interface.

Fitts’ Law states that it takes more time to hit a target if the target is further away
and also if the target is smaller. Both statements can be proven using common sense.
Fitts’ Law also states that the target acquisition time increases drastically if the target
gets tiny. Fitts’ Law states that an infinitely small target is impossible to hit because
it would take an infinitely long time, which also aligns with common sense.

For people designing graphical user interfaces, especially those who have only a
design background and no solid mathematics education, this understanding of Fitts’
Law is nearly enough to do their work well. Perhaps some concept of the steering
law (see Section 2.2) – which states that we can steer a car more quickly on a wide
and straight street than on a narrow and curved road – would be a good addition
to the knowledge of a designer, as this law also holds for steering a mouse pointer
through a cascading menu. Finally, it would be good to know that there are limits to
Fitts’ Law (see Section 1.8).

Besides Fitts’ original formula, other formulas claim to be better, especially in
their predictive power. The time predicted from these formulas is only valid for a

1



2 1 Fitts’ Law Basics

mean time overmany pointing actions. However, the pointing performance has a high
variance, not only between different persons but also within the pointing actions of
a single person. The completion time for the same pointing task differs by ±20%
(see Figure 1.22) within a person and much more within a group. Therefore, the
question of which formula is the best is unimportant for practitioners, as the results
from different formulas typically differ little.

Consequently, using other Fitts’ Law formulas do not affect practical design issues,
and the discussion which is the correct formula is a little bit academic. However, if
Fitts’ Law is the scientific claim of the HCI community, the question of the correct
formula becomes very important. It gets even more important when building new
theories on top of questionable formulas.
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1.2 Fitts’ Research

Fitts’ research question was: What is the limiting factor for the speed of controlled
body movements? He had two possible hypotheses:

• H1: The speed of controlled movements is limited by the muscle force.
• H2: The speed of controlled movements is limited by the information processing

capacity of the human nervous system.

Fitts published his research in 1954 [10]. At that time, the concept of measurable
informationwas relatively new. Shannon published his work on information theory in
1948 [24]. At that time, very few computers existed, all of which filled big rooms. The
invention of the computer mouse dates back to the late sixties. Consequently, Fitts
could not do a mouse click experiment, as typically done nowadays, to demonstrate
Fitts’ Law. Instead, he used a mechanical setup.

To answer his question, Fitts designed three simple tasks, the ‘Reciprocal Tap-
ping’ (see Figure 1.1), the ‘Disc Transfer’ (see Figure 1.2), and the ‘Pin Transfer’
(see Figure 1.3).

To test the first hypothesis, Fitts varied the stylus weight in the reciprocal tapping
experiment:

‘Two metal-tipped styluses were used. One weighed 1 oz. and was about the size
of a pencil. The other weighed 1 Ib. and was slightly larger.’ [10]

However, Fitts did not find significant differences in the performance times of his
study participants.

For the second hypothesis, Fitts needed to quantify the information amount in
the task. For this, he used an analogy to mechanical waves and the knowledge from
information theory. This analogy is legitimate as information theory is also valid
for mechanical waves, for example, acoustic waves. The mathematics for mechan-
ical and electrical waves are the same, and the reader may be more familiar with
electrical waves and the question of how much information we can transfer with
voltage. With a voltage U and a noise signal (or inaccuracy) of ∆U it is possible to
distinguish U/∆U discrete voltage levels, which can encode log2(U/∆U) bits. This
is well-known from computer science lectures on data transmission on the physical
layer of the network layer model (see Figure 1.4).

Therefore, Fitts introduced the Index of Difficulty ID as

ID = log2(
2A
W
) (1.1)

which is the number of bits needed to fulfill the pointing task. A is amplitude,
which refers here to the distance from an initial position to the center of the target.
W is the width of the target. The binary logarithm gives the number of binary digits
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Fig. 1.1 Experimental setup of Fitts’ ‘Reciprocal Tapping’. Taken from Fitts’ publication [10]

Fig. 1.2 Experimental setup of Fitts’ ‘Disc Transfer’. Taken from Fitts’ publication [10]

Fig. 1.3 Experimental setup of Fitts’ ‘Pin Transfer’. Taken from Fitts’ publication [10]
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and therefore has the unit bit. This factor 2 is the starting point for MacKenzie’s
confusion discussed in 3.1.

Fitts introduced the factor of 2 with the words:

‘The use of 2A rather than A is indicated by both logical and practical consid-
erations. Its use insures that the index will be greater than zero for all practical
situations and has the effect of adding one bit (−log21/2) per response to the diffi-
culty index. The use of 2A makes the index correspond rationally to the number of
successive fractionations required to specify the tolerance range out of a total range
extending from the point of initiation of a movement to a point equidistant on the
opposite side of the target.’ [10].

Perhaps Fitts did not express himself in the best way. This passage sounds a
little bit like passing the explanation he got from an expert. Within the analogy to
information theory, he mapped the noise amplitude to the target width. However, the
target width corresponds to the amplitude from peak to peak. Consequently, he also
took the peek-to-peek value for the movement amplitude, which is 2A (see Figure
1.5).

time tW2A

Fig. 1.4 The number of distinguishable levels (here 5) with the presence of noise as an illustration
of Fitts’ formula.

Fitts’ explanation is correct. Finally, the question is whether the radius or the
diameter should be in the formula. Choosing the diameter creates a factor of 2. Fitts
mentioned that a factor of 2 ensures positive IDs. Fitts’ formula produces negative
IDs if A < W/2. However, if the target center is closer than W/2 it means that the
pointer is already inside the target. In this case, the entry to the target happened in
the past, meaning negative time. Fitts expressed this with the words ‘the index will
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2A
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A
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m

e

Fig. 1.5 Amplitude and peek-to-peek value. This figure illustrates Fitts’ explanation for the ‘2’ in
his formula.

be greater than zero for all practical situations’, which means a starting position
outside the target. If the starting position is exactly at the target edge, the distance to
the target center is W/2, and therefore the ID is zero. This means the goal is reached
and there are no bits to transfer. Everything is alright with Fitts’ definition of the ID.
Figure 1.6 shows the values for the ID over distance to the target center.

W

R

0 1 2 3 4Fitts
ID = log2(2A/W)

2R 4R

Index of Difficulty According to Fitts

distance A

target
8R 16R

-∞

W 2W 4W 8W

Fig. 1.6 Index of Difficulty over pointer distance A to a target of given sizeW . If the pointer is at
the target edge the task is fulfilled and the ID is zero. Every doubling of the pointer distance to the
target center adds one bit to the ID.

Although it is trivial and exactly the same, it may cause less confusion to define
the ID as

ID = log2(
A
W
2
) = log2(

A
R
) (1.2)

where R is the radius (or half the width) of the target.
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Assuming a constant time for the human nervous system to process one bit,
typically named the b-constant, it is possible to calculate the time T necessary to
steer the stylus into the target by multiplying the ID with the b-constant.

T = b · ID = b · log2(
2A
W
) = b · log2(

A
R
) (1.3)

Fitts called 1/b the performance index. This value is the number of bits transferred
per second. Fitts’ experimental setup did not involve reaction times. He used metal-
tipped styluses that opened an electrical circuit at the moment of lifting and closed it
at contact with the target. In experiments where reaction time is involved, typically
a mouse click task, the reaction time a must be added. Then Fitts’ Law has the
following popular form:

T = a + b · ID = a + b · log2(
2A
W
) = a + b · log2(

A
R
) (1.4)

However, the a is never mentioned in Fitts’ paper.

The result of Fitts’ experiments was that the speed of the movement is not limited
by the muscle force; the subjects showed the same performance independent of the
weight of the stylus. Instead, the measured times agreed, although not perfectly, with
the hypothesis of information processing (see Figure 1.21).

The definition of the ID is more plausible with the plotter analogy presented in
the next section (Section 1.4), but such devices were invented just at the time when
Fitts wrote his paper.

There are two more derivations of Fitts’ Law based on a control-feedback loop
presented in Sections 1.5 and 1.6, where no bits or noise are involved. Even if Fitts’
analogy with signal and noise amplitudes (not power!) may be debatable, the three
other approaches (plotter accuracy, discrete step, and continuous approach) produce
the same formula.
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1.3 Critique of Fitts’ Theory

At the time when Fitts wrote his paper, information theory was extremely popular
and authors with all levels of understanding wrote papers using the vocabulary and
concepts of information theory. In 1958 Elias, a member of MIT and president of
the information theory society wrote an editorial titled ‘Two Famous Papers’ [9]
where he recommends that other disciplines should stop writing papers using the
framework and the vocabulary of information theory. In the case of Fitts’ theory, it
seems to be legitimate to use the framework of information theory. The derivation of
the Index of Difficulty from the ratio of the amplitudes of signal and noise leads to
a correct definition. Fitts’ Law gives valuable guidelines for the design of graphical
user interfaces operated with a mouse.

However, the way Fitts phrased his argument with information theory is very
debatable. It was an unlucky choice to refer to Shannon’s Theorem 17 to explain
a limitation by bandwidth. Unfortunately, Fitts continued his argumentation with
Shannon’s Theorem 17 in a publication in 1964 [11] and prepared the ground for
MacKenzie’s theory which is the topic of chapter 3.1.

Shannon’s Theorem 17 deals with information transmission capacity on a channel
in the presence of noise, but for Fitts’ research, the limitation is in the processing
capacity. Mentioning Shannon’s Theorem 17 as proof for a bit transfer limitation is
unnecessary as there is nothing infinite in the physical world.

This is not a channel! 

This is a channel

Fig. 1.7 Fitts’ feedback loop contains a brain with computing power and memory and therefore is
not a information-theoretic channel. Shannon’s Theorems, however, only apply to channels.
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Shannon defined:

‘The channel is merely the medium used to transmit the signal from transmitter
to receiver. It may be a pair of wires, a coaxial cable, a band of radio frequencies, a
beam of light, etc.’ [24]

In contrast, Fitts wrote about:

‘the performance capacity of the human motor system plus its associated visual
and proprioceptive feedback mechanisms’ [10].

Figure 1.7 illustrates that the feedback loop of the visual and motor system is
not a channel. According to Shannon’s definition, a channel is merely the medium.
Fitts’ feedback loop, however, contains a brain with computing power and memory.
As the feedback loop is not a channel Shannon’s Theorems do not apply. Fitts’
argumentation with Shannon’s Theorem 17 sounds scientific, but finally reveals that
he was not familiar with Information Theory. Unfortunately, MacKenzie built a
theory based on Shannon’s Theorem 17 (see 3.1) which became very popular in the
HCI community although the theory has no foundation.

Shannon’s Theorem 17 is not applicable to Fitts’ Law.
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1.4 Information in Accuracy and the Index of Difficulty

Everybody who knows how a digital plotter works understand the relationship be-
tween information and accuracy. If we send n bits to a one-dimensional plotter, we
can address 2n positions. From this, it is possible to calculate the Index of Difficulty
(ID).

Fig. 1.8 With three bits the plotter can actuate eight positions and hit the big coin. To hit the small
coin, it needs one bit more. There is a relation between the size of the coin and the bits needed to
hit it.

Let us assume the plotter pen is at position 0 and the target center of a target
with width W is at the other end at position A. With every bit sent, the plotter pen
approaches position A with half of the step size of the previous step. After n bits,
the distance to position A is A/2n. The plotter pen arrives inside the target when the
distance to position A is smaller than W/2.

W

Index of Difficulty on a Plotter

target

A0

1. bit 2. bit 3. bit

End of 
plotter
range

Fig. 1.9 Hitting the target with a plotter. The pen is at the zero position and the target center is at
the end of the plotter range.
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A
2n
≤

W
2

(1.5)

Dividing by A and inverting leads to:

2n ≥
2A
W

(1.6)

As we want to calculate the value when the pointer reaches the target edge, we can
drop the inequality and keep only the equal sign. Taking the logarithm, which yields
the unit bit, leads to the definition of the ID, which is the number of bits needed to
reach the target:

n = log2(
2A
W
) = ID (1.7)

This derivation of the ID gives a nice, understandable definition:

If the pointer moves at every step to the middle of the remaining distance to
the target center, the ID is the number of steps to reach the target.

Annotation: For a real plotter, Fitts’ hypothesis 1 is valid. The transfer of bits
to a plotter needs milliseconds or even less, while the positioning of the pen takes
fractions of seconds. It is the strength of the motor that limits the speed of a plotter.
However, we can add a camera and image processing software with the ability to
detect the pen and target position. If this software sends bits to the plotter to position
the pen inside the target, the situation is similar to what the human nervous system
does, and the limiting factor might be the speed of the image processing.
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1.5 The Discrete Step Model

The discrete step model1 is another derivation of Fitts’ Law which does not need the
concept of bits. The model starts with a step-wise movement of the pointer towards
the target. Every step consists of aiming at the target, moving the pointer to the target,
and estimating how close the pointer is to the target. The derivation uses two basic
assumptions:

• The distance to the target after each step is proportional to the distance at the
beginning of the step.

• Every step takes the same amount of time.

The first assumption reflects the scalability of nature – twice the distance means
twice the error. The second assumption reflects a constant information processing
power.

Fig. 1.10 Discrete Step Model: In each step, the pointer moves into the next circle of error.

Figure 1.10 shows discrete steps of sensing and movement. With each step,
the pointer gets gradually closer to the target. The figure also shows error circles
indicating the area where the pointer will most likely end. These circles of error
represent a probability density for the inaccuracies of the movement. The probability
density could, but does not need to be, symmetrical. The derivation only demands
that the expected value of the distance to the target after a step is proportional to
the distance at the beginning of the step. This can be the case for unsymmetrical
probability densities, for example, grabbing a cup, where overshooting is not allowed.

Let the distance to the target at each stage be Ai with the initial distance A0 = A.
After each step, the distance to the center of the target Ai+1 is a constant fraction λ
of the distance Ai at the beginning of the step.

1 see also Alan Dix, https://www.hcibook.com/e3/plain/online/fitts-cybernetic/
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Ai+1 = λ · Ai (1.8)

and consequently:

Ai = λ
i · A (1.9)

The process stops after n steps when the distance to the target center is less than
the radius R of the target:

An = λ
n · A < R (1.10)

As it is possible to choose a logarithm with any base, we choose the binary
logarithm log2 and get:

n =
log2(

R
A )

log2(λ)
(1.11)

Each step takes a fixed time τ. The total time T to reach the target is:

T = τn = τ ·
log2(

R
A )

log2(λ)
= b · log2(

A
R
) (1.12)

where b = −τ/log2(λ). As the pointer gets closer to the target with each step, λ
is smaller than 1 and log2(λ) is negative, so b is positive.

The formula derived from the discrete step model is exactly Fitts’ formula. To-
gether with an initial time a for the brain to get started, i.e. reaction time, we get the
popular form:

T = a + b · log2(
A
R
) (1.13)

Again, we got Fitts’ formula 1.7 (and not one of the alternative formulas), but this
time without information theory and terms like ‘bits’ or ‘noise’.
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1.6 The Continuous Approach Model

The problem with the discrete step model is its discreteness, which does not allow
one to describe the movement on a continuous time scale (equation of motion).
However, it is not very difficult to extend the discrete model to a continuous model
by making the steps smaller and finally doing an infinitesimal transition (see also
[5]).

Let x(t) be the distance to the target center at time t and x(0) = A. In an time step
∆t the pointer gets ∆x closer to the target. Together with the assumption that ∆x is
proportional to the current distance x(t), we get the equation:

∆x = c · x(t)∆t (1.14)

Doing a infinitesimal transformation and replacing ∆ with d we get:

dx = c · x(t)dt (1.15)

with c as the proportionality factor. The factor c is negative as we move towards the
target at the origin of the coordinate system. With a simple transformation:

dx
dt
= c · x(t) (1.16)

we get a (very simple) differential equation, which is well-known from atomic
decay or from discharging a capacitor. The solution for the differential equation, the
equation of motion, is an exponential function (e is the Euler number):

x(t) = A · ect (1.17)

It is easy to see that x(0) = A and that x(t) tends towards zero when time goes
towards infinity as c is negative.

Of course, it is possible to derive Fitts’ Law from the equation of motion 1.17.
When the pointer reaches the target edge, the pointer is radius R (or half the width
W/2) away from the target center. With T as the time to reach the target, we get the
following equation:

x(T) = A · ecT = R (1.18)

Solving this equation for T by taking the logarithm we get:

T =
1
c
· ln(

R
A
) (1.19)

We can transform this equation to:

T = −
1
c
· ln(

A
R
) (1.20)

Together with ln(x) = log2(x)/log2(e) we can write:
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T = b · log2(
A
R
) (1.21)

with b = −1/(c · log2(e)). This is again Formula 1.3 given by Fitts. However, the
reason for introducing the continuous approachmodelwas not to derive Fitts’ formula
a fourth time. We will need the equation of motion in the next section (Section 1.7)
to calculate the pointer speed over time.
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1.7 Reality versus Model

In general, it is desirable to have a model which predicts reality with high accu-
racy. However, accuracy is not the only criterion for a model. For any measured
data, it is possible to find an empirical function, for example, a polynomial, which
approximates the data quite well. In the eyes of an engineer, such an empiric func-
tion is valuable because it allows for the prediction of accurate values. In the eyes
of a scientist, this function does not help much, as it does not explain underlying
mechanisms. Even if the accuracy is lower, scientists prefer a formula derived from
assumptions. If measured data fit the derived formula, this strongly supports the
assumptions made. Even if an empirically derived function produces better results
because of ‘dirty effects’ not considered by the model assumptions, the theoretically
derived formula has more explanatory power.

Sometimes the benefit of amodel lies in simplification. Typically, physicists derive
formulas for a perfect sphere rolling down a perfect plane. The resulting formula
does not predict the motion of a real rock rolling down a hill with high accuracy.
However, the formula reflects concepts of translation, rotation, and potential energies
and allows for general statements. A formula with the ambition to predict the motion
of a real rock rolling down a hill, if such a formula exists,would needmany parameters
specifying the shape of the stone and the hill. For most practical purposes, this would
not be worth the effort.

After this discussion on the value of models, we will now look at the continuous
model introduced in Section 1.6. This model is a simplification and does not match
reality perfectly. The main problem is the initial speed of the movement.

To get the speed v(t) we take the derivative of the equation of motion (1.17) with
respect to time:

v(t) =
dx(t)

dt
= c · A · ect (1.22)

and the initial speed at t = 0 is v(0) = c · A.

Figure 1.11 shows the speed over time as calculated with the continuous model.
This initial speed contradicts the fact that the pointer rests at the beginning of the
task; nothing can be accelerated within zero time. Figure 1.12 shows speed over time
as expected by common sense, i.e. considering acceleration.

To show that common sense matches reality, Figure 1.13 shows true mouse speed
data from a user study [6]. The study was not designed for measuring mouse speeds,
and due to constraints on the temporal resolution of the data imposed by the 10 ms
time slice length of the operating system (Windows XP), the data is a little bit noisy.
The first 200 milliseconds are the reaction time. The rest of the curve looks similar
to Figure 1.12.

The consequence of the discrepancy between theory and common sense is that
the time to reach the target is a little bit longer than predicted by the theory because
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Fig. 1.11 Speed over time for the continuous approach model
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Fig. 1.13 Speed (in pixels/millisecond) over time (in milliseconds) from measured data
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Fig. 1.14 Curved mouse path to target. The green dots indicate 100 ms intervals.

Fig. 1.15 Distance to target over time until mouse click for Figure 1.14 (curved mouse path)

of the additional time required to accelerate to the initial speed. For this reason, an
alternative Fitts’ Law formula may fit marginally better to actual data.

People who go for amore realistic model with better predictive power can enhance
the continuous model by adding an acceleration phase. The initial speed is given
above (Formula 1.22), and the time to reach this speed can be calculated with the
assumption of gradually increasing muscle force [1]. During the acceleration phase,
the pointer has already covered some distance toward the target. Therefore, the Fitts’
Law phase must be calculated with a reduced distance. It is not very difficult to
derive the formula for such an enhanced model, but this brings along two further
parameters, the mass (of mouse and arm) and the achievable acceleration (individual
muscle strength or precisely the constant of the constantly increasing force). The
increase in model complexity introduced by the addition of the two extra parameters
is not worth the expected slight improvement in the prediction of the movement
time. The acceleration phase is short (see Figure 1.13) in comparison to the total
execution time and does not add completely as the pointer covers some distance in
the acceleration phase. This confirms the thoughts from the beginning of this section
– a simple model can be more helpful than a complex model.
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The continuous approach model was introduced to calculate an initial speed. As
this model considers only radial speeds, we are free to choose tangential movements.
This means we can model curved paths to the target. Figure 1.14 shows a mouse
path recorded in a user study. The green dots indicate the mouse position at 100 ms
intervals. Figure 1.15 shows the corresponding distance to the target over time. The
gray area represents the target.

However, this model does not match all situations. In many cases, especially when
asked to hit the target as quickly as possible, people tend to overshoot the target.
Overshooting the target means that the pointer crosses the target and has to move
backward. Therefore the velocity changes the sign. Figure 1.16 and Figure 1.17
shows an example recorded in a user study. The continuous approach model cannot
explain this situation.

Fig. 1.16 Overshooting the target

Fig. 1.17 Distance to target over time until mouse click for Figure 1.16 (overshooting the target)
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1.8 Limits of Fitts’ Law

Every theory is only valid within a certain range, and this is also the case for Fitts’
Law. If the ID is very small or very large, Fitts’ Law is not applicable. If a person
stands next to a 1 m x 1 m table and has her or his hand 20 cm away from the edge
of this table and is asked to knock on the table, it will take a certain time until the
hand reaches the table. If we replace the table with a bigger 2 m x 2 m table and ask
the person to do the same task again, the time to reach the table will be the same,
although the ID is smaller because of a bigger target size. The reason for the same
execution time is that for both tasks, the challenge is to bridge the gap of 20 cm. As
the table is big enough in both cases, its size is irrelevant. The person fulfilling the
task does not aim at the table center but to a point behind the table edge.

start position

target
center

circle of error

landing position
target
edge

Fig. 1.18 If the pointer is close to a big target, the aim is not the target center, but a point across
the target edge. How far this point is away from the edge depends on the size of the error circle.

Figure 1.18 shows the situation. The distance the pointer covers is the distance
to the target edge plus a safety distance, which is about the accuracy of the move
without a feedback-control loop. Figure 1.18 shows this accuracy as the circle of
error. In this situation the time to reach the target does not depend on the target
size but only on the distance of the pointer to the target edge, which is a ballistic
movement. This means that if the pointer is close to the target, Fitts’ Law does not
apply.

This raises the question of how far the pointer has to be away from the target that
Fitts’ Law applies. Figure 1.19 tries to answer the question with common sense. Let
us assume an error of about 25% for the ballistic movement. If the pointer is only
one target radius away from the target edge, this means an ID of 1, the aim is not
the target center. For a short move, the circle of error is small, and the distance to
the target edge plus the radius of the error circle is shorter than the distance to the
target center. If the pointer is three target radii away from the target edge, this means
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Fig. 1.19 When the pointer is only one target radius away from the target edge (ID = 1), the aim
is not the target center. If the pointer is three target radii away from the target edge (ID = 2), the
aim is the target center, if the error circle is bigger than the target.

an ID of 2, the radius of the error circle exceeds the target radius and the aim is the
target center. With this rough estimation, we can say that Fitts’ Law applies if the ID
is bigger than two. Hoffmann’s review [15] reports on values between 1.5 and 4 for
the lower bound of the ID.

This lower bound for the ID has relevance for HCI. When operating a graphical
user interface with a mouse, it happens quite frequently that the target is large and
the pointer is not far away from the target. A typical example is to activate a window
that covers half of the screen.

There is also an upper limit for the ID. The maximum distance to the target
and the minimum target size determine the upper limit. Typically, the maximum
distance in a pointing experiment is the arm length, and the minimum target size is
the visual resolution – the target must be visible – and bigger than the amplitude
of muscle tremor. For a pointing task on a computer screen, the maximum distance
depends on the screen size, and the minimum target size is the pixel size. From our
daily experience, we know that addressing a single pixel on a high-resolution display
(2K or bigger) is already difficult. It depends on the individuals’ vision and muscle
tremor until which resolution she or he is still able to address a single pixel. If we
take A = 2048 pixels and D = 1 pixel, the corresponding ID is 12.

For the application of Fitts’ Law, the ID should be between 2 and 12 or, to be
on the safe side, between 3 and 10.
For smaller IDs, the movement becomes ballistic. For higher IDs, the task
becomes impossible.
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There is a further limit for Fitts’ Law by the pointer size. Ideally, the pointer’s tip
size is infinitely small. Practically, the pointer’s tip has a finite size. If the pointer
is the fingertip, the task to hit a target of 1 mm, 2 mm, or 4 mm in diameter does
not make a relevant difference as these targets are all smaller than the fingertip. If
the hit condition is that the target area and the pointer tip area overlap, the task is
equivalent to a pointing task with an infinite small pointer tip and a target with a
diameter, which is the sum of the diameters of the original target and pointer tip.
In such a situation, the smallest possible effective target size is the pointer size (see
Figure 1.20).

target

effective target size

pointer size

Fig. 1.20 If the pointer has a finite size the effective target width is the sum of target size and
pointer size.

Besides pointing with a finger, the reason this is mentioned here is gaze pointing,
where the size of the pointer is the size of the fovea, the small region where we can
see with high resolution. However, Fitts’ Law does not apply to eye pointing (see
3.4).
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1.9 Evaluation of Fitts’ Law Data

A typical Fitts’ Law study lets the participants move a pointer from distance A to
a target of size W (width or diameter) and measures the time T to reach the target.
The evaluation of a Fitts’ Law study depends on the design of the experiment, or the
other way round, the study design depends on the planned evaluation.

One important question is whether reaction time is involved. If there is no reac-
tion time involved, as it is the case in Fitts’ reciprocal tapping task (see 1.2), the
completion time is proportional to the ID, which means T = bID. The evaluation
has to be done accordingly, which means a linear fitting model without an intercept.
The derivation of the needed formula is given below.

The measured times deviate by error ei from Ti = bIDi .

Ti = bIDi + ei (1.23)

The square error function E(b) is:

E(b) =
n∑
i=1

e2
i =

n∑
i=1
(Ti − bIDi)

2 (1.24)

Differentiating 1.24 with reference to b and setting it to zero delivers the b for the
minimum error.

E(b)′ =
n∑
i=1

2(Ti − bIDi)(−IDi) = 0 (1.25)

So the b with the minimum error is:

b =
∑n

i=1 Ti IDi∑n
i=1 ID2

i

(1.26)

The second derivative of E(b) is twice the sum of ID2 which is positive and
confirms that E(b) is minimized for this b.

If there is no reaction time involved, but the data is evaluated with linear regres-
sion, it is likely that the intercept is not exactly zero. In consequence it is necessary
to discuss whether the intercept’s deviation from zero is within an error interval
determined by the noise in the data, or whether there is a hidden reaction time not
considered in the study design.

In a setup that involves reaction times, the completion time T for the task obeys
T = a + bID, where a is the reaction time. The intercept calculated with regression
analysis delivers the reaction time. The derivation of the formula to estimate the a
and the b is similar to the derivation of the linear fitting model without an intercept
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as given above but requires finding the minimum for two variables. However, most
spreadsheet applications offer a linear regression just by ticking a checkbox.

The other important question is whether the independent variables, target size
and distance, are chosen randomly from an interval or from discrete values. Fitts
had a mechanical setup with a limited number of physical targets and could use
only discrete values for the target size. Fitts constructed these values for target size
and distance by doubling the previous value. The advantage of this approach is that
several combinations of size and distance which result to the same ID.

The evaluation of a Fitts’ Law study should have two goals:

1. Showing that Fitts’ Law applies
2. Estimating the value of b

Most publications reporting on Fitts’ Law studies do not prove the first goal rigor-
ously but either assume that Fitts’ Law is valid or that a value for R2 close to 1 in the
regression analysis proves the validity. The later is not true, especially for regression
analysis on already averaged data (see 1.10).

Fitts proved the validity of his law by estimating the performance rate (1/b) for
all conditions and presented them in a three-dimensional figure (see Figure 1.21).
For a perfect fit, all values have to be on a horizontal plane, as the performance rate
should be the same in all conditions. Figure 1.21 shows that Fitts’ data does not fit
perfectly but are constant within an error tolerance of 20%. Fitts did not report and
indicate the performance rate’s error interval, such as the standard deviation in his
figure, and did not discuss whether the data is constant in consideration of the er-
ror range. Instead, Fitts argued that the data fit his law only within an optimum range.

‘The results indicate that rate of performance in a given type of task is approx-
imately constant over a considerable range of movement amplitudes and tolerance
limits, but falls off outside this optimum range.’ [10]

Another way to show the validity of Fitts’ Law would be to show that execution
times for the tasks depend only on the ratio of distance and target size. The discrete
setup is best to do this as there are tasks with the same ratio of distance and target size
but different target sizes, or distances, respectively. A t-test on the execution times of
pointing tasks with the same ID but different target sizes, or distances, respectively,
could show that the execution time is independent of the distance. However, the
t-test may fail if the data set is large enough, which means it may show that the
execution times for different distances are not from the same distribution, even if
the IDs are equal. The reason is that the derivation of Fitts’ Law is based on ide-
alizations as discussed in the previous section (1.7). The (short) acceleration phase
of the pointing movement is not considered and leads to a small dependency on the
distance independent of the target size. Statistical tests are optimized to find even
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Fig. 1.21 Fitts [10] estimated the performance rate (1/b) for all conditions and presented them in
a three-dimensional figure. For a perfect fit all values have to be on a horizontal plane.

small dependencies.

In the case of a setup with randomly chosen values, one way to show that the
times do only depend on the ratio of distance and target size would be to show that
the data points above and below the regression line are balanced according to the
distance and target size.

The second step would be to show the linear dependency of execution times
from the ID. From distance A and target size W it is possible to calculate an ID
(ID = log2(2A/W)). The execution times are plotted over ID in a scatter plot. For
a linear dependency, the execution times should lie on a line. If no reaction times
are involved, the line has to go through the origin. If the execution times include
reaction times, the intersection of the line with the ordinate, also called intercept,
specifies the reaction time. Figure 1.22 is an example of such a plot and analysis.
A regression test calculates the line of best fit, also called the regression line. The
slope of the regression line is the value of b.

As mentioned already, most spreadsheet applications offer a scatter plot function
and the calculation of a regression line with a few simple mouse clicks. Figure 1.22
was made in this way. It additionally shows the equation of the regression line and
the R2-value, which is also called the coefficient of determination. R2 is a measure
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Fig. 1.22 Measured Fitts’ Law data and regression line from a user study for 100 mouse clicks.
Typically, the data are more a cloud than on a straight line.

of the goodness of fit. A value of R2 equal to 1 indicates a perfect fit. In the case
of simple linear regression, R2 is the square of the correlation coefficient. Therefore
many evaluations of Fitts’ Law experiments report a correlation value. As the corre-
lation is the square root of R2, which is R, it is even closer to 1. The theory of linear
regression is a topic of countless textbooks and standard knowledge in statistics, but
beyond the scope of this lecture. It is beneficial to study these textbooks, as they help
to avoid misconceptions.

Most studies on Fitts’ Law report a correlation, but correlation does not tell much.
It would be much better to know the accuracy of the a- and b-constant given as an
interval. The textbooks mentioned above explain how to calculate these intervals.
However, there are software packages that do the job. One such software package
is gnuplot. The program gnuplot provides these intervals, together with the other
values, using the following commands shown in Figure 1.23 (The file fit100.txt
contains the measured data used in Figure 1.22):
gnuplot gives us a standard error and now we know that the a-constant is in

the range from 468 to 668 milliseconds and the b-constant is in the range from
68 to 107 milliseconds/bit. This statement helps much more to compare different
measurements of Fitts’ Law data.
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gnuplot> f(x) = a + b*x
gnuplot> fit f(x) ’fit100.txt’ using 2:1 via a, b

...

After 4 iterations the fit converged.
final sum of squares of residuals : 2.24853e+006
rel. change during last iteration : -2.89397e-010

degrees of freedom (FIT_NDF) : 98
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 151.473
variance of residuals (reduced chisquare) = WSSR/ndf : 22944.1

Final set of parameters Asymptotic Standard Error
======================= ==========================

a = 568.329 +/- 100.4 (17.66%)
b = 87.4702 +/- 19.49 (22.28%)

correlation matrix of the fit parameters:

a b
a 1.000
b -0.989 1.000

Fig. 1.23 gnuplot’s output for the data in Figure 1.22

An evaluation is not done with stating the values, but needs a critical discussion.
From the b-constant we know that it took 87.5 milliseconds to transmit one bit or
that 11.4 bits were transmitted in a second. This matches with the values measured
by Fitts:

‘Performance on the pin-transfer task varied from 8.9 to 12.6 bits/sec, for the 20
conditions studied, ...’ [10]

The a-constant, which is equivalent to reaction time, is around 568 milliseconds.
As typical reaction times are 200 to 300 milliseconds this value seems to be rather
high. However, the reason is that there are two reaction times involved in the experi-
ment – the first reaction time is the time to start moving the mouse (see Figure 1.13)
and the second reaction time is the time to click the mouse key when arriving in the
target (see Figure 1.15). gnuplot can also plot the data (see Figure 1.24).

The evaluation given so far is still not perfect. Measured data, in this case distance
and time, always have measurement errors. This error can be visualized by error bars
in the plot. The time for the presented data was measured on an operating system
with ten milliseconds time slices (Windows XP) and therefore the error in the time
measurement is around one percent. With respect to the high standard error reported



28 1 Fitts’ Law Basics

Fig. 1.24 gnuplot’s plot for the data in Figure 1.22 (time in milliseconds over ID in bits)

by gnuplot, it is legitimate to neglect the error of the input data. However, it is a
good scientific style to report error intervals for the raw data.

Finally, the standard error reported by gnuplot assumes certain properties for
the data distribution. For a perfect evaluation, it is necessary to show that these
assumptions are true. However, this is cumbersome and sometimes even difficult.
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1.10 How Not to Evaluate Fitts’ Law Data

Most HCI publications which report about Fitts’ Law studies have severe deficits in
their evaluation. It starts with associating the b-parameter with the device, going on
with using thewrong formula, continuingwith very questionable statistic evaluations,
and finally forgetting to show that Fitts’ Law applies at all. There is a check list with
recommendations for correct Fitts’ Law studies at the end of this section.

The logarithm can approximatemost data on a curved line quitewell. The reason is
that the logarithm offers all curvature values. By scaling and shifting the logarithmic
curve, it is possible to find parameters that approximate the data well within an
interval. This makes it possible to claim the validity of Fitts’ Law for most data,
even if it is not the case. A regression line over a logarithmic scale does not prove a
logarithmic relation, even if the correlation is good.

To achieve a good correlation, many HCI researchers use the discrete setup,
averaging the values for the same ID, doing a regression analysis with the few
data points left after averaging, and reporting a correlation close to 1. However,
correlation strongly depends on the number of data points used for the calculation.
Furthermore, correlation does not say anything about significance – it needs another
statistical test to show this, and this test uses n − 2 degrees of freedom for n data
points. In other words, averaging the data first and calculating a correlation afterward
reduces the significance of the correlation value.

If one is doing Fitts’ Law studies with a mouse device and a computer screen, the
restrictions of amechanical setup do not exist, and it is possible to design the study on
a nearly continuous scale (depending on screen resolution) instead of discrete values.
The data in Figure 1.22 is from an experiment on a continuous scale. The value of R2

is not close to 1, indicating a not perfect fit. To demonstrate that correlation depends
on the number of data points, Figure 1.25 shows the same data of 100 mouse clicks
as in Figure 1.22 but averaged first over groups of 10 data points. The slope and
offset for now only ten data points did not change much, but the R2 went up from
0.17 to 0.66 (0.81 for R). With two data points only, R2 will have the perfect value
of 1.0.

It is worth mentioning that Fitts did not argue that a high correlation proves his
assumption. He did a critical analysis of his data with the result that his or her data
was not perfect. Fitts’ mentioning of correlation sounds more like an apology:

‘The Pearsonian correlation between the 16 values for the two variations in the
tapping task was large however (r = .97).’ [10]

This sentence also shows that Fitts was aware that correlation depends on the
number of values and therefore mentions the 16 values. As Fitts’ experiment had
four different target sizes and four distances, the 16 values also tell that Fitts did not
average the values for the same ID first before doing the evaluation. However, Fitts
calculated the correlation with averaged values for each condition, and this is the
reason why the correlation was good.
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Fig. 1.25 Fitts’ Law data for 100 mouse clicks, but averaged over sets of 10 data points first. The a-
and the b-parameter do not differ much in value compared to the evaluation given in Figure 1.22.
However, R2 is much better.

Fitts had a mechanical setup and therefore had only a few different IDs. He used
four different target sizes and four different distances. He chose sizes and distances
in a ratio of 1, 2, 4, and 8. This is an advantageous choice as it includes different
pointing tasks with the same ID. This allows for testing the validity of Fitts’ Law:
pointing tasks with different target sizes but the same ID should have the same
completion time.

With a discrete setup, the corresponding scatter plot looks like the schematic
diagram given in Figure 1.26. In the HCI community, it seems to be common practice
to average the completion time for the same ID before evaluating the data with a
regression test. This is not legitimate because it makes the correlation meaningless.
Figure 1.26 shows two different data sets, which will produce the same value for the
correlation if averaged first. However, it is obvious that the left data set fits much
better. Figure 1.27 shows the data set from Figure 1.26 with the standard deviation as
error bars. The dotted lines show the visual estimation of a minimal and a maximal
slope of the regression line. If the data set is too big to visualize in the style of Figure
1.26, it should be visualized with error bars, as this allows us to estimate the range
of the regression line’s slope.

Averaging the data points over IDs from different target sizes, respectively dis-
tances, is not legitimate because it assumes the validity of Fitts’ Law already before
testing the validity. The consequence of such ill method is that the test confirms the
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Fig. 1.26 Two different data sets with the same correlation if averaged first. The crosses represent
the data, and the circles represent the means.
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Fig. 1.27 The data sets from Figure 1.26 with the standard deviation as error bars. The dotted lines
show regression lines with the minimal and the maximal slope.

assumption, which was put implicitly into the data, even if Fitts’ Law does not apply.
This is what has happened in many publications, for example [20], which state that
Fitts’ Law is valid for eye movements.

To illustrate this, let us assume that the formula of Carpenter (see Chapter 3.4,
formula 3.10) applies to eye movements. The formula of Carpenter is an early and
not very accurate approximation for eye movements, but it is a good example to
demonstrate the effect of averaging over IDs before doing the regression analysis.
With Carpenter’s formula, the time to hit the target depends linearly on the distance
but not at all from the target size.

Let us do the evaluation as given in ‘Application of Fitts’ Law to Eye Gaze
Interaction’ [20], but let us assume a linear dependency from the distance only.
This means the completion time is proportional to the distance. Figure 1.28 shows
a schematic diagram for three target sizes and three distances fully crossed, which
results in nine data points. For themiddle ID there are three combinations of distance
and size. These three combinations have different completion times as the completion
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time depends only on the distance by assumption. Under this assumption, the data
are not on a straight line, but the averaged data are, and a regression test on the five
averaged data produces a ‘very good’ correlation.

time

ID

data point

averaged data point

Fig. 1.28 Data set which assumes a completion time only linearly depending on the distance, but
not on target size. Averaging over IDs first confirms Fitts’ Law, even if it does not apply.

As the argumentation above is only on a qualitative level, let us have a closer look
on a quantitative level. Let us again assume a linear dependency for the completion
time T , which only depends on the distance A and not on the target size. This means
T ∝ A. For convenience , the target sizes and distances are 1, 2, 4, and 8 in arbitrary
and perhaps different units. This is legitimate because the correlation is independent
of scales. The four target sizes and distances with the lengths 1, 2, 4, and 8 result in
sixteen values with seven different ratios, as shown in Table 1.1.

Table 1.1 Ratios for all combinations for four distances A and four target radii R

A R 1 2 4 8

1 1 2 4 8
2 1/2 1 2 4
4 1/4 1/2 1 2
8 1/8 1/4 1/2 1

Typically, the subjects in such a user study perform pointing tasks over all com-
binations of target sizes and distances, which results in data probes of uniform
distribution over all combinations. With a linear relation it is possible to calculate
the average execution time from the average distance. Table 1.2 shows all possible
IDs and the resulting average distances (

∑
A/#), which by assumption is propor-

tional to the completion time T . Again, for convenience, we assume T = A.

Figure 1.29 shows the completion time (as circles), which is equal to the average
distance, over ID as given in Table 1.2 together with their trend line (solid) and
all 16 data (as crosses) according to Table 1.1 also together with their trend line
(dashed). For all 16 data R2 is only 0.46 but for the 7 averaged data R2 is 0.97 which
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Table 1.2 All possible ratios from Table 1.1 and the corresponding IDs and average distance.

A/R log2(A/R) #
∑

A
∑

A/#

1/8 -3 1 1 1
1/4 -2 2 1+2 3/2
1/2 -1 3 1+2+4 7/3
1 0 4 1+2+4+8 15/4
2 1 3 2+4+8 14/3
4 2 2 4+8 6
8 3 1 8 8

Fig. 1.29 Assuming a pointing task where the completion time depends only on the distance, but
not the target size. There are 16 data points (crosses) in a 4x4-condition, which can be averaged for
seven IDs. The regression analysis for the 16 data points is black, and for the seven data points is
green. Averaging the data for same IDs forces the validity of Fitts’ Law.

is very close to 1.0. However, the calculation here was done under the assumption
that Fitts’ Law does not apply. In consequence, a value for R2 or for the correla-
tion close to 1 is no proof of the validity of Fitts’ Law if the data were averaged before.
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The following list summarizes recommendations to avoid flawed evaluations.

• Make clear what the meaning of the b-parameter you want to measure is.
The b-parameter characterizes the processing power of the human brain and is
not a property of a device or interface (see section 3.3). Consider reporting times
without a Fitts’ Law evaluation.

• Do not forget to show that Fitts’ Law applies at all.
Use the recorded data to show this (see section 1.9).

• Use Fitts’ formula and neither MacKenzie’s formula nor the ISO 9241-9 standard.
MacKenzie’s formula is unfounded (see section 3.1) and the ISO 9241-9 standard
uses MacKenzie’s formula.

• Use the correct formula for calculating the regression line.
Depending on the experiment’s setup the measured times may or may not contain
reaction times. If no reaction times are involved, the intercept has to be zero (see
section 1.9).

• Do not average the data before calculating the regression line.
Averaging the data before calculating the regression line delivers perfect R2-
values close to 1 but these R2-values do not have any significance (see above).

• State a confidence interval for the b-parameter instead of a correlation.
The correlation value depends strongly on the number of data points used for the
calculation and does not tell anything about the accuracy of the reported b-value
(see section 1.9).

• Report the b-parameter with units, i.e. s/bit or ms/bit.



Chapter 2
Fitts’ Law Extended Topics

Abstract This chapter deals with the application of Fitts’ Law on multi-dimensional
movements and target shapes. The main topic, however, is the Steering Law, which
is a valuable contribution with practical applications to interface design.

2.1 Two- and Three-dimensional Movements and Target Shapes

Many publications on two-dimensional movements and targets exist, for example
[18], [25], [3], [36].

There is no reason to make the two- and three-dimensional case more difficult
than it is. Looking at an x-y-plotter, it is clear that we have to transmit double
the amount of information, e. g. bits, to a two-dimensional plotter compared to a
one-dimensional plotter. However, the positioning of the plotter pen does not take
twice as much time as typically both step motors work in parallel. The situation is
the same for the muscles of the human body. Every antagonistic pair of muscles is
controlled by the nervous system, which needs b seconds to process a bit. These
control processes take place in parallel, and therefore the execution time does not
change with dimension. Fitts measured comparable values for the b-constant in the
one- and two-dimensional tasks. Also a look at the discrete step model makes clear
that the dimensionality of the task does not change the situation. The derivation of
the discrete step model (see Section 1.5) does not need any assumption on the dimen-
sionality; the mathematics is the same for the one-, two-, and three-dimensional case.

One question of practical importance for the HCI community is the question of
target shapes. Pointing to a word, for example on a menu item, means that the target
size differs in direction. Again, the situation is quite clear using common sense.

If a plotter has the task positioning its pen inside a rectangle, the number of bits
to transfer does not only depend on the dimensions of the rectangle but also the
orientation. Figure 2.1 shows the same rectangle in different orientations. For the

35
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Fig. 2.1 Positioning accuracies depend on the orientation of the rectangle

horizontal rectangle, it takes the minimum number of bits to position the pen in
the x-direction. However, in the y-direction, it needs the maximum number of bits.
For the diagonally oriented rectangle, it needs a medium number of bits for both
directions. With the assumption that the bits for both directions are transmitted in
parallel, it means that the pen will arrive earlier in the diagonal-orientated rectangle.
The length to hit the diagonally oriented rectangle is

√
2 bigger than the small length

to hit in the horizontal-oriented rectangle. The target width is in the denominator
when calculating the ID, and as log2(1/

√
2) = log2(2−1/2) = −1/2, the ID is half a

bit less.With a b-constant of 100milliseconds/bit, the pointer will be 50milliseconds
earlier at the target.

Figure 1.22 shows that execution times in a Fitts’ Law experiment have a standard
deviation in the magnitude of 100 ms to 200 ms. A subject has to do quite a few
pointing tasks to prove the 50 ms difference for the different target orientations.

The situation for steering a mouse with the hand into the target is the same as for
the plotter. However, we have to look at the coordinate system of the motor space
and not the device (screen) space. Typically, the motor space has a curved coordinate
system (see Figure 2.2) because the angles of our joints define the motor space.
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elbow

hand

Fig. 2.2 Motor space of a hand controlling a mouse

In most situations, the motor space has a higher dimension than the device space.
This means there are many possible arm postures with the fingertip in the same
location. To calculate the consequences of target shape and orientation, the target
has to be mapped into motor space first.

For multidimensional targets, the minimum size rules the acquisition time.



38 2 Fitts’ Law Extended Topics

2.2 The Steering Law

One valuable extension to Fitts’ Law from the HCI community is the steering law
of Accot and Zhai [2]. The idea behind the steering law is that steering a vehicle
through a narrow tunnel needs more time than through a wide tunnel. The same is
true for steering the mouse through cascading menus.

The question for the steering law is: How much time T does it need to steer the
mouse through a tunnel of length A (A stands for the amplitude to be consistent with
Fitts’ Law) and width W?

Accot and Zhai give the following relation:

T = a + b ·
A
W

(2.1)

where a and b are empirically determined constants.

This lecture discusses the derivation of this formula by Accot and Zhai later and
presents another approach first. This approach1 is a model with a speed-accuracy
trade-off similar to the discrete step mode (see Section 1.5). A movement within a
single time unit t can be short or long, but the movement accuracy is a fraction of
the covered length. The maximum movement within one time unit is a movement
where the error circle does not exceed the width of the tunnel. Figure 2.3 illustrates
the situation.

borderError circle

for movement
of length s

s

W

Fig. 2.3 Steering through a tunnel. The red area shows the error circle associatedwith themovement
length s.

1 This is the idea of the author; as it is simple and obvious it may be published by somebody already.
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For simplicity, we assume a straight tunnel of constant width W . Let f be the
factor to calculate the radius r of the error circle from the length s of the movement:

r = f · s (2.2)

For not bumping into the borders of the tunnel the error circle has to be smaller
than the width of the tunnel W :

r <
W
2

(2.3)

Together with the relation of distance and error (2.2) and an equal sign for the
maximum distance we get

f · s =
W
2

(2.4)

and solved for s:

s =
W
2 f

(2.5)

Now it is easy to calculate the time T for steering through a tunnel of length A
and width W . As we move distance s in one time unit t we have to divide the total
length A by s and multiply by t:

T = t · 2 f ·
A
W

(2.6)

Together with a reaction time, this formula is the same as given by Accot and Zhai
(formula 2.1), however, derived from different assumptions and with much simpler
mathematics.

The approach of Accot and Zhai is much more complex. They divide the steering
task into n subtasks of Fitts’ Law-type with tunnel length A/n, use MacKenzie’s
formula, do an infinitesimal transition, and do a Taylor series expansion.

IDtunnel = n · log2(
A

n ·W
+ 1) = log2((

A
n ·W

+ 1)n) n→∞ (2.7)

The argument of the logarithm is a well-known series (the limit definition of the
exponential function eA/W by Euler). The problem is that with Fitts’ original formula,
which means without the 1, the infinitesimal transition converges to zero. Therefore,
it is doubtful whether it is possible to compose a steering task from infinitely small
Fitts’ Law-type tasks. Nevertheless, Yamanaka replicated the infinitesimal approach
in 2016 [31].

Formula 2.1 and 2.6 shows that the traveling time T is proportional to the length
A of the tunnel, which is what we expect by common sense. If we know the time it
needs to steer through a certain tunnel, we can connect the same tunnel at the end of
the first tunnel, and the traveling time will be double. Concatenating n tunnels with
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traveling times ti will result in a traveling time which is the sum of all ti . If the tunnel
has changing widths, it is possible to divide the tunnel into pieces with constant
width and sum the times needed for the pieces. This gave Accot and Zhai the idea
to calculate the steering time for a tunnel with changing widths from a path integral.
They also proposed calculating complex paths, means curved paths, by integration
over the curvilinear abscissa. This will hold for ‘smooth’ curves (see Figure 2.4).
Smooth here means that the radius of the curvature is much bigger than the length s.

W

Fig. 2.4 The time to steer through a curved tunnel can be calculated by a composition of parts as
long as the curves have only moderate changes in direction and width.

Accot and Zhai expressed it by:

IDtunnel =

∫ A

0

dx
W(x)

(2.8)

This is a very elegant way to express it and works in ‘nice’ conditions. However, it
suggests a universal validity, which does not exist, as it ignores that there is something
like a characteristic length (the s in Figure 2.3). Strictly speaking it is a characteristic
ratio (the f in formula 2.2) as the geometry is free of scale. Figure 2.5 shows two
tunnels with the same ID according to formula 2.8. Even without conducting a user
study it is clear that it takes more time to steer the mouse through the lower tunnel.

As soon as the radius of the curves is smaller than the distance s the situation
becomes complex. Figure 2.6 shows a tunnel, where it is not even clear which is the
path through it.

While the idea of the steering law is good and probably the best contribution from
HCI to Fitts’ Law, the mathematical derivation of the formula by Accot and Zhai
seems to have some flaws. From a designer’s point of view, however, the discussion
presented above, and common sense, are good enough to design proper interfaces.
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s

Fig. 2.5 Two tunnels with the same ID according to Formula 2.8

Fig. 2.6 Two possible paths - dashed and dotted - through a tunnel
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Annotation: It is not possible to model the steering of a mouse through a cascading
drop-down menu solely with the Steering Law. A drop-down menu creates a vertical
tunnel. This tunnel is wide and the task is to hit the correct row, which is a Fitts’
Law task. At the moment the mouse pointer is in the correct row, the task becomes a
steering task as the mouse pointer has to stay in the row to keep the right cascading
menu open.However, stayingwith themouse pointerwithin the row is notmandatory.
Finally, it is only necessary to exit the drop-down menu through the correct row.
Again, this is a Fitts’ Law task with the row height as the target size. Steering a
mouse through a cascading drop-down menu is a task that is rather complicated to
model (see Figure 2.7).

a

b

c

Fig. 2.7 Steering a mouse through a cascading menu is a complex task. Segments ‘a’ and ‘c’ are
Fitts’ Law tasks. Segment ‘b’ is either a Fitts’ Law task or a steering task. The dotted segments are
alternative paths through the menu.



Chapter 3
Fitts’ Law in the HCI Community

Abstract This chapter discusses the problematic aspects of Fitts’ Law in the HCI
community. The first topic is MacKenzie’s theory. A further topic is the trough-put
defined in ISO 9241-9 and the question of whether the b-parameter is a property
of the pointing device. Then a discussion follows whether Fitts’ Law applies to eye
movements. The chapter closes with the notion of a Fitts’ Law filter bubble and echo
chamber in the HCI community.

3.1 MacKenzie’s Theory

Shannon published his Information Theory in 1948. A short time later, in 1954,
Fitts applied information theory to the information processing capacity of the human
nervous system [10]. In 1989 MacKenzie found Fitts’ research and recognized that
Fitts’ Law applies to mouse devices. Up to that point, everything was fine. However,
MacKenzie thought that Fitts’ theory was incorrect and that he knew better.

MacKenzie writes in his ‘Note on the Information Theoretic Basis for Fitts’ Law’:

‘we demonstrate that Fitts’ choice of an equation that deviates slightly from the
underlying principle is perhaps unfounded’ [17]

and

‘Fitts recognized that his analogy was imperfect.’ [17]

For a perfect formula, MacKenzie suggests a

‘direct analogy with Shannon’s Theorem 17’ [17]

43
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and writes:

‘It is the purpose of this note to suggest that Fitts’ model contains an unnecessary
deviation from Shannon’s Theorem 17’ [17].

These are strong statements, as they imply that psychology researchers were
aware that the formula was imperfect but were unable to fix it within the last 35
years. Section 1.3 explains why Shannon’s Theorem 17 does not apply to Fitts’ Law,
and this means that MacKenzie’s theory is unfounded. In consequence, all research
that uses MacKenzie’s theory is unfounded too.

It seems that MacKenzie did not understand Fitts’ theory and the definition of the
Index of Difficulty (ID), especially his reason for the presence of a ‘2’. MacKenzie
justifies the imperfectness of Fitts’ formula with:

‘The "2" was added to avoid a negative ID when A = W ; however, log2(2A/W)
is zero when A = (W / 2) and negative when A < (W / 2).’ [17]

This statement is correct, but does not mean that Fitts’ formula is incorrect. When
A < (W/2), the pointer is already inside the target (see Figure 3.1) so the pointer
entered the target in the past, which means negative time.

MacKenzie suggests the following formula:

MT = a + b · log2((A +W)/W) (3.1)

which can be also written as:

MT = a + b · log2(A/W + 1) (3.2)

In MacKenzie’s view, this solves the problem with Fitts’ formula as the ‘+1’
ensures positive IDs.

‘It is noteworthy that, in the model based on Shannon’s theorem, ID cannot be
negative.’ [17]

Figure 3.1 shows the Index of Difficulty according to Fitts in the upper row and
according to MacKenzie in the lower row. The closer the pointer is to the target, the
less difficult the task. When the pointer is at the edge of the target, the pointing task
is fulfilled and Fitts’ ID is zero. Without the ‘2’ in the formula, the ID at the target
edge would be ‘-1’. This is what Fitts mentioned in his paper (see also Section 1.2):

‘The use of 2A rather than A is indicated by both logical and practical consid-
erations. Its use insures that the index will be greater than zero for all practical
situations.’ [10]
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Fitts
ID = log2(2A/W)

MacKenzie
ID = log2(A/W + 1)

2R 4R

Index of Difficulty According to Fitts and MacKenzie
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1 1.585.. 2.321.. 3.170..
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Fig. 3.1 Index of Difficulty over pointer distance to target according to Fitts (upper) andMacKenzie
(lower). It is hard to understand why according to MacKenzie there is still some difficulty left when
the pointer reached the target. And why is Fitts’ formula imperfect?

Fitts’ ID fulfills all expectations and is not ’imperfect’. In particular, the presence
of the factor of ‘2’ is correct. The ID is the logarithm of the ratio of the distances
from the target center to the pointer and to the target edge. The distance to the target
edge is half of the diameter and this is where the ‘2’ comes from.

Fitts’ definition of the ID has vivid interpretations. If the pointer moves with
every step to the middle of the remaining distance to the target center, the ID is the
number of steps needed to reach the target (see Section 1.4). Alternatively, the ID is
the number of binary digits of the pointer distance measured in units of target radius.

WithMacKenzie’s definition, the ID for a pointer at the target edge is log2(3/2) ≈
0.585. It is hard to understand why there is still some difficulty left when the pointer
has reached the target and the task is done. Such ill-defined ID causes negative in-
tercepts. If the pointer is at the target edge the task is fulfilled and the execution time
is zero. With a positive ID it needs a negative a to get a time of zero. MacKenzie
himself reports on negative intercepts in his publication from 1991 [19]

‘however, a large, negative intercept appeared for the trackball-dragging combi-
nation (-349 ins). .... a negative prediction would only occur for ID< 0.5 bits.’ [19]

There is nothing wrong with Fitts’ definition of the ID, while MacKenzie’s
definition is not even plausible.

If there is nothing wrong with Fitts’ formula, there is no need for an alternative
formula.

As MacKenzie’s main argument is that Fitts’ formula is imperfect, the arguments
given above should be enough to ban MacKenzie’s formula. However, as MacKen-
zie’s theory is extremely popular, this lecture goes on with a discussion of the ‘direct
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analogy’. MacKenzie complains:

‘The reason Fitts did not use Shannon’s original equation was not stated.‘ [17]

However, MacKenzie did not give any reason why this theorem should apply to
pointing movements. Theorem 17 implies that there are at least 16 further theorems
which could be used for an analogy.

The reason why Fitts did not use Shannon’s Theorem 17 is very simple. Theorem
17 is not helpful for defining an ID. Theorem 17 calculates information capacity or
bandwidth. As information capacity is the limiting factor in Fitts research hypothesis,
Fitts mentioned the formula of Theorem 17 in a footnote. Within the context of Fitts’
Law, Theorem 17 allows one to estimate a value for the b-parameter, or 1/b to
be precise, but has nothing to do with the ID. The ID is a pure geometric value
depending only on lengths and has no time aspect. Therefore, Fitts used an analogy
to amplitudes (explained in Section 1.2).

It is more than questionable whether MacKenzie’s ‘direct analogy’ to Shannon’s
Theorem 17 is legitimate. Shannon’s Theorems are valid for channels but the control-
feedback loop for a Fitts’ Law task is not a channel according to Shannon’s definition
(see Figure 1.7). This means that Shannon’s Theorem 17 is not applicable.

Shannon’s Theorem 17 has bandwidth as result, which is a frequency and is
measured in bits/second. Why should bandwidth be analogous to completion time,
which is measured in seconds? And why should power be analogous to diameter?
Power is proportional to the square of the amplitude, and the amplitude relates
to radius and not to diameter. Choosing a formula based on appearance and just
swapping letters is naïve.

Shannon’s Theorem 17 has nothing to do with the Index of Difficulty (ID).

MacKenzie calls his theory the ‘Shannon Model’. This is misleading as it sounds
like Shannon himself made the model, giving MacKenzie’s formula the scientific
credibility of Shannon. Of course, MacKenzie could not name his formula after
himself, but the HCI community could clearly refer to either Fitts’ theory and Fitts’
formula or MacKenzie’s theory and MacKenzie’s formula.

An unexplained aspect of MacKenzie’s formula is the mysterious a-parameter.
It appears out of nowhere without any explanation and is referred to later as the
intercept. The a-parameter is not part of Shannon’s Theorem 17 and also does not
occur in Fitts’ publication. The reason why it does not appear in Fitts’ publication
is that reaction time was involved in his experiment. If used together with Fitts’ ID,
the a-parameter is a reaction time. Together with MacKenzie’s ID, the a-parameter
loses this meaning.

Dropping the factor of 2 in Fitts’ formula (1.7) does not affect the value of the
b-parameter. However, it affects parameter a.
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T = a + b · log2(
2A
W
) (3.3)

= a + b · (log2(
A
W
) + log22) = a + b + b · log2(

A
W
) (3.4)

= a′ + b · log2(
A
W
) (3.5)

with
a′ = a + b (3.6)

This means that parameter a does not have the meaning of reaction time any-
more. Therefore, some people call the a′-constant the ‘non-informal parameter’,
which contributes to the confusion.

MacKenzie’s theory damages the meaning of the a-parameter.

MacKenzie states that with his definition for the ID, experimental data yield a
better correlation. This seems to be true. However, if a high value for correlation is the
goal, the addition of 2 or 3 instead of 1 in MacKenzie’s formula (3.2) results in even
better correlations (at least with the author’s data sets). MacKenzie did not examine
his data in that direction. However, the question is, whether correlation, especially
on pre-averaged data, is the right value for judging the quality of a formula. Section
1.9 discusses this in detail.

Section 1.7 explains that empirically fitted formulas can match experimental data
better than a model. However, empirically fitted formulas do not explain the under-
lying principles.

In MacKenzie’s next publication, together with A. Selen andW. Buxton, he refers
to his own formula with:

‘There is recent evidence that the following formulation is more theoretically
sound’ [19].

Scientists should not confirm their own results, and if they do, these results should
not be taken as evidence. The statement that MacKenzie’s formulation is more the-
oretically sound should therefore be doubted.

A further problem with this publication is that the value of the b-parameter is
assigned to the pointing devices. According to Fitts, however, the b-parameter is a
property of the human nervous system. This is the topic of the Section 3.3.
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3.2 Other Theories and Formulas for Fitts’ Law

There are further formulas for Fitts’ Law. One is known as the Welford formulation:

T = a + b · log2(
A
W
+ 0.5) (3.7)

MacKenzie published his theory online1 and added a link to a review2 of his publi-
cation, which was done byWelford. In this reviewWelford approves of MacKenzie’s
formula. AsWelfod agrees toMacKenzie’s formula he votes against his own formula.

There are plenty of extensions and alternatives for Fitts’ Law. These contributions
are spread over different disciplines, such as psychology, human computer interac-
tion, human movement science, and biological cybernetics. Some publications in
the field build their research on MacKenzie’s formula, others use Fitts’ formula and
do not even mention MacKenzie’s theory. Some of them are solid, valuable science,
while others are questionable. The problem lies in finding out which is which. The
number of publication is enormous and it will probably take a lifetime to work
through all of them. MacKenzie published a bibliography of research on Fitts’ Law3

with 310 entries, but the last update is from 25-Jun-02, which is nearly two decades
ago. However, research on Fitts’ Law did not stop.

The following formulas for the ID are only few examples selected by impressive-
ness. The following definition for the ID is from Zhang et al. [35] who used it for eye
pointing target acquisition. However, Fitts’ Law does not apply to eye movements
(see Section 3.4).

IDeye =
eλA

W − µ
(3.8)

In 2011, Soukoreff, Zhao, and Ren published a paper with the title ‘The Entropy of
a Rapid Aimed Movement: Fitts’ Index of Difficulty versus Shannon’s Entropy’ [27].
It is a further application of information theory and also an example for a very
impressive definition of a further ID:

IDentropy(U,W) = m + log2(U) −
1
2
· log2(πe ·

W2

8
) + 1) (3.9)

The authors write that they examine the question: ‘What is the precise relationship
between the index of difficulty and entropy?’ [27]. It is up to the reader to find the
answer in the paper.

1 http://www.yorku.ca/mack/JMB89.html
2 http://www.yorku.ca/mack/WelfordReview.html
3 http://www.yorku.ca/mack/RN-Fitts_bib.htm
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In 2018, Gori published a TOCHI paper [13] and a PhD thesis with the title
‘Modeling the Speed-Accuracy Tradeoff Using the Tools of Information Theory’.
Gori writes:

‘Elias [..], an important figure of the information theory society to which we will
return in Chapter 6, urged authors – using a very ironic, even aggressive tone –
to stop writing approximative papers that abused information theoretic results and
concepts. Fitts’ work, based on a loose analogy with Shannon’s Theorem 17, is a
good example of abuse of information theory

• Why should D/W of Fitts’ Law be analogous to P/N as defined in Shannon’s
Theorem 17?

• What is the bandwidth BW of Shannon’s Theorem 17 analogous to in Fitts’ Law?
There seems to be no reason to identify BW to 1/MT beyond the fact that both are
expressed in the same physical units (s−1).

• Since D and W are amplitudes while P and N are powers, what happened to the
squares?’ [12, p. 36]

Gori’s accusation that Fitts abused information theory definitely does not have an
ironic tone. Gori uses Drewes’ [7] arguments, originally formulated againstMacKen-
zie’s theory, without reference and turns them into an allegation against Fitts. This
perverts the facts. Fitts used Shannon’s Theorem 17 only to argue that bandwidth lim-
its the pointing speed and did not make an analogy to Shannon’s Theorem 17. Fitts’
analogy uses amplitudes, which is legitimate and has nothing to do with Shannon’s
Theorem 17. Actually, it was MacKenzie who introduced the analogy to Shannon’s
Theorem 17. He writes (already cited in Section 3.1):

‘It is the purpose of this note to suggest that Fitts’ model contains an unnecessary
deviation from Shannon’s Theorem 17’ [17].

and

‘The reason Fitts did not use Shannon’s original equation was not stated.‘ [17]

This means that MacKenzie believed that an analogy to Shannon’s Theorem 17
is necessary and complained that Fitts did not use it.

Gori’s reference to Elias [9] points to an editorial from the year 1958, where Elias
writes about papers using the vocabulary and conceptual framework of information
theory:

‘I suggest that we stop writing them, and release a large supply of manpower to
work on the exciting and important problems which need investigation’ [9].
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This sounds very reasonable – and even polite – and Gori and the HCI community
could have heeded Elias’ advice.

Fig. 3.2 An overview on variants of Fitts’ Law as given by Plamondon et al. [21]

To finish this section, Figure 3.2 shows an overview of variants of Fitts’ Law
as given by Plamondon et al. [21]. This lecture refrains from discussing all these
theories or formulas. However, it raises the question of the benefit of these theories. Is
there any practical impact? Do these theories contribute to knowledge, clarification,
and understanding or do they increase confusion? How much Fitts’ Law research do
we need until the topic is understood?
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3.3 The b-parameter and the Throughput in ISO 9241-9

Beside the fact that the performance, or bit transfer, in Fitts’ experiments did not
depend on the weight of the stylus, the bit transfer was within 8 to 12 bits/second for
all tasks. This means that the human nervous system has a general limit for control
tasks independent from the details of the task.

Therefore it is surprising that the International Standardization Organization de-
fined a throughput TP based on Fitts’ Law to characterize the performance of input
devices in ISO 9241-9. There is a critical voice against the definition of TP [32] by
Zhai. His critique is that ISO 9241-9 does not use the a- and b-constant but defines
the throughput TP by the ratio of the Index of Difficulty and trial completion time.

However, it is questionable whether the ISO standard of throughput makes sense
at all. Seeing the performance as a property of a device is the opposite of Fitts’
idea, who sees performance as a property of the nervous system. Comparing a small
laptop mouse against a big desktop mouse in the context of a student exercise did not
show differences in performance. Comparing a trackball against a standard mouse
device typically shows that people perform better with the standard mouse device.
However, people who use a trackball for their daily work show the same performance
as with a standard mouse device. This means the performance of a pointing device
depends on the subject and especially on her or his training on the device.

Fitts showed that the pointing performance does not depend on the mass and the
size of the pointing device (see 1.2). In consequence, the throughput of a mouse
device does not depend on the size or weight of the mouse. This raises the question
of which properties of the mouse influence the throughput. Or to ask the other way
round: how to build a mouse with a ‘good throughput’?

It seems that nobody uses this ISO standard, and manufacturers of mouse devices
do not state a throughput value for their products. Instead, they refer to a dpi-value
(dots per inch), which is the resolution of the mouse device’s optical sensor. This
dpi-value determines the maximum control-gain ratio. The control-gain ratio is the
ratio of the distance the mouse pointer covered on the screen and the distance the
mouse covered on the table. A high dpi-value allows for moving the mouse at a high
speed and reduces the necessary space for the mouse on the table. However, this does
not increase the accuracy. Mouse devices for gamers advertised with high dpi-values
often come with a sniper mode button, which reduces the dpi-value.

Modern graphical operating systems offer adjustments to the control-gain ratio
and mouse acceleration. Again, the mouse acceleration decreases the distance the
mouse and the hand have to cover, and therefore the physical workload, but does not
increase the number of bits a human can transfer to the mouse. A high control-gain
ratio speeds up the work on a graphical user interface as many pointing operations
aim for large targets, such as an application window, which are not ruled by Fitts’
Law (see Section 1.8).

Exercise: Discuss the throughput TP for a mouse operated with the feet.
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3.4 Fitts’ Law does not Apply to Eye Movements

This chapter would not be necessary, if there were not a handful of publications,
which did a Fitts’ Law evaluation for eye movements, for example [30], [20], [34],
[29], [35], [33]. Psychology textbooks state that the eyes move ballistically which is
the opposite of Fitts’ Law. Also, Sibert and Jacob expressed themselves as skeptical
of the validity of Fitts’ Law for the eyes [26].

Ballistic movements do not depend on target size. Psychology textbooks also give
a formula for the time the eyes need to position on a target. This formula was given
by Carpenter4 [22] and is independent of the target size:

T = 21ms + 2.2ms/◦·A (3.10)

A is the amplitude of the eye movement measured in degrees, as the eye move-
ment is a rotational movement. Formula 3.10 assumes a linear relation and was
approximated by fitting experimental data. See Abrams, Meyer, and Kornblum [1]
for a better eye speed model assuming a gradually increasing eye muscle force.
Assuming a constantly increasing muscle force results in a cubic root relation. In
both approaches, the eye movement time does not depend on target size. It is hard
to understand why some publications in the field of HCI ignore the results of psy-
chology completely, and also do not even listen to warning voices [26] from their
own community. Additionally, the publications which experimentally ‘proved’ Fitts’
Law for the eyes made severe mistakes in the evaluation by averaging over IDs first.
This means to implicitly assume that Fitts’ Law is valid before the proof, which then
confirms it. There is a detailed discussion on this mistake in Section 1.9.

Saccades are abrupt eye movements with speeds up to 700◦/sec. This means that
the visual information on the retina changes quicker than the receptors can process
it, and therefore the eye is virtually blind during a saccade. This means that the
movement cannot be controlled by a feedback loop, and therefore the movement is
ballistic. The situation is comparable to throwing a stone; when the stone leaves the
hand, there is no further control over the movement, and the arrival at the target does
not depend on the target size.

Assuming that Fitts’ Law applies to eye movements not only contrasts the results
of psychology but also leaves open questions. The first thing to be discussed is
the question of whether target acquisition by the eye is a single- or multi-saccade
process. It seems that the eye can position itself at a target with a single saccade
with an accuracy, which is enough to bring the target into the small field of the
high-resolution vision (fovea).

When aiming for a small target, it is sufficient if the target is finally within the
field of high-resolution vision given by the fovea. The target doesn’t need to be in
the center. Looking at something is like pointing with a pointer of the size of the
fovea. The target size is not relevant, as long as it is smaller than the fovea (see also

4 http://wexler.free.fr/library/files/carpenter (1988) movements of the eyes.pdf, Figure 4.2
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Section 1.8). The situation is similar to spotting an insect with a flashlight, depicted
in Figure 3.3. Of course, it is possible, especially if demanded, to position the light
cone that the insect is in the center, however, normally this is not necessary. For a
Fitts’ Law experiment with the gaze, it is crucial how the hit condition is defined.
If the hit condition is that the reported x-y coordinates, which means the center of
the fovea, is on the small target, the hit condition may force a corrective saccade.
For seeing the target, the first saccade has sufficient accuracy in most cases. The
corrective saccade is necessary to bring the target into the center of the fovea. A
gaze-pointing experiment with such a hit condition creates an artificial situation.
Additionally, eye trackers have an inaccuracy which should also be considered for
the hit condition.

Fig. 3.3 Spotting an insect at the wall with a flashlight does not require that the insect is in the
center of the light cone. Also the size of the insect does not matter.

The next thing to discuss is the target and its size. What are targets for the eye
when watching a video, and what are the target sizes? What is the target size when
looking at a face - the eye, the nose, the mouth, or the whole face? Gaze pointing
experiments with big plain circle targets (see Figure 3.4) reveal that the gaze typically
does not jump to the target center but rather crosses the target border, as discussed
in Section 1.8. It seems that the eye does not have a concept of targets with size but
only knows spots of interest. In consequence, the only relevant size for gaze pointing
is the size of the fovea. Without a target size, it is impossible to calculate a time with
Fitts’ formula.

There is no Fitts’ Law without a concept of target size.

It is also possible to think about the consequences it would have if Fitts’ Law
applies to eye movements. One consequence would be that completion times for eye
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Fig. 3.4 Gaze trail from a gaze pointing experiment where the next target on a grid was highlighted
in a random order immediately after the current target was hit by gaze. The gaze typically does not
jump to the target centers. The targets had a size of 2◦. Taken from [6].

pointing would be independent of the distance of the eyes to the screen. If the eyes
change the distance to the screen, both target size and target distance are scaled with
the same factor, and the ID does not change. This is valid as long the angles are in
a moderate range, meaning sin(x) ≈ x, or in other words, the effect of a flat display
against a curved one is small. This independence from the distance to the screen
would be a nice property for gaze interfaces, and it would be easy to show in a user
study.

In 2019 Schuetz et al. published a paper with the title ‘An Explanation of Fitts’
Law-like Performance in Gaze-Based Selection Tasks Using a Psychophysics Ap-
proach’ [23]. They write:

‘Therefore, saccades are pre-programmed, ballistic movements [...]. Given these
reasons, Fitts’ Law should not apply to saccadic eye movements’. [23]

and

‘As we will show below, movement times of individual saccades are indeed inde-
pendent of target size and do not follow Fitts’ Law.’ [23]

If this would be the central statement of the publication, it would be a good
clean-up of the mistakes from the past. However, the authors argue that the eyes
move Fitts’ Law-like. They refer to Errol Hoffmann who published ‘Fitts’ Law With



3.4 Fitts’ Law does not Apply to Eye Movements 55

An Average of Two or Less Submoves?’ [16]. In simple words, this means if we have
a series of submoves, even with ballistic characteristics, the situation approaches the
discrete-step model as explained in Section 1.5.

Schuetz et al. argue:

‘ However, humans frequently generate secondary (‘’corrective”) saccades after
a main target directed saccade, especially when aiming for small targets [...]. We
show that these additional saccades can explain the Fitts-like relationship between
movement time and target size.’ [23]

Restricting the statement of Fitts’ Law-likeness to eye movements with a sec-
ondary saccade, which may happen frequently but not the normally, is ‘ingenious’. It
avoids pointing out mistakes done by other authors and even legitimizes erroneous,
previous research. This can be seen as a diplomatic concession to the HCI com-
munity. However, science should have a stricter concept of truth than diplomacy.
Additionally, the secondary saccade may be caused by the hit condition as explained
above.

The positive aspect of Schuetz’s publication is that reviewers can not reject papers
on gaze-pointing techniques anymore because of a missing Fitts’ Law evaluation as
done in the past. However, the publication does not prevent more Fitts’ Law-for-the-
eyes papers. Zhang et al. published such a paper in 2021 [33].

And as a final remark and just for completeness, a Fitts’ Law study of pupil
dilations got the result that

‘Fitts’ index of difficulty had no significant effect on pupil dilation’ [4].
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3.5 Fitts’ Law and the HCI’s Scientific Claim

HCI claims to be a science. There are some rules for science. One of these rules
is to be free of contradictions. In the moment a contradiction arises a scientific
community has to solve it to stay scientific. To have different formulas for the same
thing is definitely a contradiction. It is not possible to have a good and a better
formula.

There are people who see HCI as a ‘soft science’ and think that these rules
should not be applied too strictly. However, the contradicting formulas of Fitts and
MacKenzie are built on information theory, which is a hard science, and as such
demands strict rules. People who want to do ‘soft science’ should stay away from
information theory and other hard sciences.

When MacKenzie states that ‘Fitts’ choice of an equation that deviates slightly
from the underlying principle is perhaps unfounded’ and ‘Fitts recognized that his
analogy was imperfect’ [17], he is definitely issuing a critique – not to the HCI
community, but to psychology.

With the same right with whichMacKenzie claims that Fitts’ formula is imperfect,
and in contrast well-founded, it is possible to state:

1. Fitts’ formula is perfect.
2. MacKenzie’s theory is unfounded and his direct analogy is naïve.
3. The b-parameter belongs to the human and is not a property of a device.
4. Fitts’ Law does not apply to eye movements.

These claims have yet to be confirmed or disproved by the HCI community,
Statement 1 and 2 at least since the publication of ‘Only one Fitts' Law formula
please!’ [7] in the year 2010.

Despite the misleading title ‘An Explanation of Fitts' Law-like Performance in
Gaze-Based Selection Tasks Using a Psychophysics Approach’, Schuetz et al. [23]
confirmed Statement 4 in 2019. The fact that manufacturers of mouse devices do
not state the ‘through-put TP’ in the data sheets supports Statement 3. Another
critique of MacKenzie’s theory, which agrees with Statement 2, was written by Errol
Hoffmann [14] in 2013 . Hoffmann’s critiques were published in the same journal
(JMB) where MacKenzie published his note.

A general confirmation of the four statements by the HCI community, however, is
still pending and seems unlikely to happen. The consequence of a confirmationwould
be the invalidation of several hundred peer-reviewed scientific HCI papers. Many
authors of these papers still publish and are in leading positions within the HCI com-
munity. The problem is notMacKenzie’s theory, but the 21286 citations5 of his work.

5 https://scholar.google.ca/citations?user=G9MSEncAAAAJ&hl=en looked up at 28.3.2023
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In ’Seven HCI Grand Challenges’ the authors write:

’Besides ”filter bubbles”, other technological perils to democracy include fake
news, echo chambers (i.e., shared social media bubble with like-minded friends, re-
sulting in restricted access to a diversity of views), and agenda shaping by increased
visibility of the most popular stories in media.’ [28]

Fitts’ Law research inHCI seems to fulfill the criteria of a filter bubble and an echo
chamber. The filter is the review process. Critical paper submissions are typically
reviewed by the criticized researchers, who reject critiques of their own research.
In consequence, only research which confirms questionable theories gets published
and this forms an echo chamber. The big number of already existing questionable
publications is used as the argument to reject reasonable paper submissions.However,
science is not a democracy.

The narrative told by the members of the the Fitts’ Law filter bubble is that
psychology applied information theory to pointing movements, but was not able
to do it correctly. As mentioned above, MacKenzie [17] states that Fitts’ theory is
unfounded and Fitts’ formula is imperfect and Gori [12, p. 36] says that Fitts abused
information theory. The members of the bubble, however, have greater abilities and
know how to do it right. They are so self-confident that they do not need consultation
from external experts and can ignore critical voices. It is out of the question that it
could be the other way round and they arewrong. External expertise could come from
the information theory society6 or the physics department of the local university.

The Fitts’ Law filter bubble, or the MacKenzie bubble, puts into peril HCI’s
scientific claim and damages the credibility of the whole community. Members of
the HCI community who are not involved in Fitts’ Law research should worry and
take action to save their reputation. With the current tendencies in society towards
‘alternative facts’, we are in danger of losing the truth. It is more important than ever
for the HCI community to establish proper scientific standards and defend scientific
truth. The author’s recent publication, ‘The Fitts’ Law Filter Bubble’ [8] is another
attempt to create an awareness of the problem in the HCI community.

The Fitts’ Law bubble in HCI has existed since at least 1989 with MacKenzie’s
theory and is older than any social media bubble. Social media bubbles and echo
chambers are very difficult to shatter. However, ignoring the problem would be
ignorant and the problem will get even worse. It seems that the HCI community has
a challenge.

6 https://www.itsoc.org/
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